Home Differential subordinations and Pythagorean means
Article
Licensed
Unlicensed Requires Authentication

Differential subordinations and Pythagorean means

  • Eszter Gavriş EMAIL logo
Published/Copyright: September 27, 2020
Become an author with De Gruyter Brill

Abstract

The aim of this paper is to generalize several differential subordination results, involving arithmetic, geometric and harmonic means of the expressions p(z) and p(z)+zp(z)p(z). Are also given certain applications of the main results.

MSC 2010: 30C45
  1. (Communicated by Stanisława Kanas)

References

[1] Cho, N. E.—Lecko, A.: Differential subordination of harmonic mean, Comput. Methods Funct. Theory 15(3) (2015), 427–437.10.1007/s40315-015-0108-0Search in Google Scholar

[2] Chojnacka, O.—Lecko, A.: Some differential subordination of harmonic mean to a linear function, Rocky Mountain J. Math. 48(5) (2018), 1475–1484.10.1216/RMJ-2018-48-5-1475Search in Google Scholar

[3] Kanas, S.: Weighted Harmonic Means, Complex Anal. Oper. Theory 11 (2017), 1715–1728.10.1007/s11785-017-0680-6Search in Google Scholar

[4] Kanas, S.—Crişan, O.: Differential subordinations involving arithmetic and geometric means, Appl. Math. Comput. 222 (2013), 123–131.10.1016/j.amc.2013.07.051Search in Google Scholar

[5] Kanas, S.—Lecko, A.: Univalence criteria connected with arithmetic and geometric means, II, Folia Sci. Univ. Tech. Resov. 20 (1996), 49–59.Search in Google Scholar

[6] Kanas, S.—Lecko, A.: Univalence criteria connected with arithmetic and geometric means, II. In: Proceedings of the Second Int. Workshop of Transform Methods and Special Functions, Varna ’96, Bulgarian Academy of Sciences, Sofia 1996, pp. 201–209.10.1080/17476939608814851Search in Google Scholar

[7] Kanas, S.—Lecko, A.—Stankiewicz, J.: Differential subordinations and geometric means, Compl. Var. Theor. Appl. 28 (1996), 201–209.10.1080/17476939608814851Search in Google Scholar

[8] Kanas, S.—Stankiewicz, J.: Arithmetic means with reference to convexity conditions, Bull. Soc. Sci. Lett. Łódź 47, Ser. Rech. Deform. 24 (1997), 73–82.Search in Google Scholar

[9] Kanas, S.—Tudor, A.-E.: Differential Subordinations and Harmonic Means, Bull. Malays. Math. Sci. Soc. 38 (2015), 1243–1253.10.1007/s40840-014-0078-9Search in Google Scholar

[10] Lecko, A.—Lecko, M.: Differential subordinations of arithmetic and geometric means of some functionals related to a sector, Int. J. Math. Math. Sci. 2011 (2011), Art. ID 205845.10.1155/2011/205845Search in Google Scholar

[11] Lewandowski, Z.—Miller, S.—Złotkiewicz, E.: Gamma-starlike functions, Ann. Univ. Mariae Curie-Skł odowska 28 (1974), 32–36.Search in Google Scholar

[12] Lewandowski, Z.—Miller, S. S.—Złotkiewicz, E.: Generating functions for some classes of univalent functions, Proc. Am. Math. Soc. 56 (1976), 111–117.10.1090/S0002-9939-1976-0399438-7Search in Google Scholar

[13] Miller, S. S.—Mocanu, P. T.: Differential Subordinations: Theory and Applications. Pure and Applied Mathematics 225, Marcel Dekker, New York, 2000.10.1201/9781482289817Search in Google Scholar

[14] Miller, S. S.—Mocanu, P. T.—Reade, M. O.: Allα-convex functions are starlike, Rev. Roum. Math. Pures Appl. 17(9) (1972), 1395–1397.Search in Google Scholar

[15] Miller, S. S.—Mocanu, P. T.—Reade, M. O.: Allα-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37(2) (1973), 553–554.10.2307/2039483Search in Google Scholar

[16] Mocanu, P. T.: Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11(34) (1969), 127–133.Search in Google Scholar

[17] Nunokawa, M.: On the order of strongly starlikeness of strongly convex functions, Proc. Japan. Acad. Ser. A 69 (1993), 234–237.10.3792/pjaa.69.234Search in Google Scholar

[18] Sakaguchi, K.: A note on p-valent functions, J. Math. Soc. Japan 14 (1962), 312–321.10.2969/jmsj/01430312Search in Google Scholar

[19] Srivastava, H. M.—Magesh, N.—Yamini, J.: Initial coefficient estimates for bi-λ-convex and bi-μ-starlike functions connected with arithmetic and geometric means, Elect. J. Math. Anal. Appl. 2(2) (2014), 152–162.10.21608/ejmaa.2014.310680Search in Google Scholar

[20] Tudor, A. E.: Bi-univalent functions connected with arithmetic and geometric means, Journal of Global Research in Mathematical Archives 1(2) (2013), 78–83.Search in Google Scholar

[21] Tudor, A. E.—Răducanu, D.: On a subclass of analytic functions involving harmonic means, An. Şt. Univ. Ovidius Constanţa 23(1) (2015), 267–275.10.1515/auom-2015-0018Search in Google Scholar

Received: 2020-01-25
Accepted: 2020-02-21
Published Online: 2020-09-27
Published in Print: 2020-10-27

© 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0419/html
Scroll to top button