Startseite On the topological complexity of Grassmann manifolds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the topological complexity of Grassmann manifolds

  • Vimala Ramani EMAIL logo
Veröffentlicht/Copyright: 27. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We prove that the topological complexity of a quaternionic flag manifold is half of its real dimension. For the real oriented Grassmann manifolds n,k, 3 ≤ k ≤ [n/2], the zero-divisor cup-length of the rational cohomology of n,k is computed in terms of n and k which gives a lower bound for the topological complexity of n,k, TC(n,k). When k = 3, it is observed in certain cases that better lower bounds for TC(n,3) are obtained using ℤ2-cohomology.

MSC 2010: 57R19; 55M30; 55M99
  1. Dedicated to Professor Parameswaran Sankaran on the occasion of his 60th birthday

    (Communicated by Július Korbaš)

Acknowledgement

The author would like to thank Professor Parameswaran Sankaran for the encouragement and the very useful discussions. The author also would like to thank Professor Aniceto Murillo for sending a copy of his paper [15].

The author is highly indebted to the referee for the valuable comments and suggestions, in particular for pointing out a lacuna in the proof of Theorem 1.5 in the case n = 7 in the previous version; the referee’s helpful suggestions have made the proof of Theorem 1.5 thorough and clear.

References

[1] Basu, S.—Chakraborty, P.: On the cohomology ring and upper characteristic rank of Grassmannian of oriented 3-planes, J. Homotopy Relat. Struct. (2019), https://doi.org/10.1007/s40062-019-00244-1.Suche in Google Scholar

[2] Cohen, D.—Suciu, A.: Boundary manifolds of projective hypersurfaces, Adv. Math. 206 (2006), 538–566.10.1016/j.aim.2005.10.003Suche in Google Scholar

[3] Dranishnikov, A.: On topological complexity of twisted products, Topology Appl. 179 (2015), 74–80.10.1016/j.topol.2014.08.017Suche in Google Scholar

[4] Farber, M.: Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211–221.10.1007/s00454-002-0760-9Suche in Google Scholar

[5] Farber, M.—Tabachnikov, S.—Yuzvinsky, S.: Topological robotics: motion planning in projective spaces, https://arxiv.org/pdf/math/0210018.pdfSuche in Google Scholar

[6] Farber, M.: Instabilities of robot motion, Topology Appl. 140 (2004), 245–266.10.1016/j.topol.2003.07.011Suche in Google Scholar

[7] Farber, M.—Grant, M.—Lupton, G.—Oprea, J.: Bredon cohomology and robot motion planning, Algebr. Geom. Topol. 19 (2019), 2023–2059.10.2140/agt.2019.19.2023Suche in Google Scholar

[8] Farber, M.—Grant, M.—Lupton, G.—Oprea, J.: An upper bound for topological complexity, Topology Appl. 255 (2019), 109–125.10.1016/j.topol.2019.01.007Suche in Google Scholar

[9] Fukaya, T.: Gröbner basis for oriented Grassmann manifolds, Homology, Homotopy Appl. 10(2) (2008), 195–209.10.4310/HHA.2008.v10.n2.a10Suche in Google Scholar

[10] Korbaš, J.: Bounds for the cup-length of Poincaré spaces and their applications, Topology Appl. 153 (2006), 2976–2986.10.1016/j.topol.2006.01.005Suche in Google Scholar

[11] Korbaš, J.: The cup-length of the oriented Grassmannians vs a new bound for zero-cobordant manifolds, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 69–81.10.36045/bbms/1267798499Suche in Google Scholar

[12] Korbaš, J.: The characteristic rank and cup-length in oriented Grassmann manifolds, Osaka J. Math. 52 (2015), 1163–1172.Suche in Google Scholar

[13] Korbaš, J.—Rusín, T.: A note on the ℤ2-cohomology algebra of oriented Grassmann manifolds, Rend. Circ. Mat. Palermo (2) 65(3) (2016), 507–517.10.1007/s12215-016-0249-7Suche in Google Scholar

[14] Korbaš, J.—Rusín, T.: On the cohomology of oriented Grassmann manifolds, Homology, Homotopy Appl. 18(2) (2016), 71–84.10.4310/HHA.2016.v18.n2.a4Suche in Google Scholar

[15] Lechuga, L.—Murillo, A.: Topological complexity of formal spaces. Contemp. Math. 438, 2007, pp. 105–114.10.1090/conm/438/08448Suche in Google Scholar

[16] Mukherjee, G.—Sankaran, P.: Minimal models of oriented Grassmannians and applications, Math. Slovaca 50(5) (2000), 567–579.Suche in Google Scholar

[17] Ramani, V.—Sankaran, P.: On degrees of maps between Grassmannians, Proc. Indian Acad. Sci. Math.Sci 107(1) (1997), 13–19.10.1007/BF02840469Suche in Google Scholar

[18] Petrović, Z. Z.—Prulović, B. I.—Radovanović, M.: Characteristic rank of canonical vector bundles over oriented Grassmann manifolds3,n, Topology Appl. 230 (2017), 114–121.10.1016/j.topol.2017.08.010Suche in Google Scholar

[19] Rusin, T.: Bounds for the characteristic rank and cup-length of oriented Grassmann manifolds, Arch. Math. (Brno) 54 (2018), 313–329.10.5817/AM2018-5-313Suche in Google Scholar

[20] Tralle, A.—Oprea, J.: Symplectic Manifolds with no Kähler Structure, LNM 1661, Springer-Verlag, 1997.10.1007/BFb0092608Suche in Google Scholar

Received: 2019-10-28
Accepted: 2020-01-05
Published Online: 2020-09-27
Published in Print: 2020-10-27

© 2020 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0425/html?lang=de
Button zum nach oben scrollen