Startseite Mathematik Root separation for polynomials with reducible derivative
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Root separation for polynomials with reducible derivative

  • Artūras Dubickas EMAIL logo
Veröffentlicht/Copyright: 27. September 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Suppose f is a degree d polynomial with integer coefficients whose derivative f′ is a polynomial reducible over ℚ. We give a lower bound for the distance between two distinct roots of f in terms of d, the height H(f) of f, and the degree m of the irreducible factor of f′ with largest degree. The exponent (d + m − 1)/2 that appears as the power of H(f) is smaller than the corresponding exponent d − 1 in Mahler’s bound.

MSC 2010: 11C08; 12D10
  1. (Communicated by István Gaál)

Acknowledgement

I thank both referees for noticing several misprints and suggesting some improvements. This research was funded by the European Social Fund according to the activity “Improvement of researchers’ qualification by implementing world-class R&D projects” of Measure No. 09.3.3-LMT-K-712-01-0037.

References

[1] Beresnevich, V.—Bernik, V.—Götze, F.: The distribution of close conjugate algebraic numbers, Compos. Math. 146 (2010), 1165–1179.10.1112/S0010437X10004860Suche in Google Scholar

[2] Bugeaud, Y.—Dujella, A.: Root separation for irreducible integer polynomials, Bull. Lond. Math. Soc. 43 (2011), 1239–1244.10.1112/blms/bdr085Suche in Google Scholar

[3] Bugeaud, Y.—Dujella, A.: Root separation for reducible integer polynomials, Acta Arith. 162 (2014), 393–403.10.4064/aa162-4-6Suche in Google Scholar

[4] Bugeaud, Y.—Mignotte, M.: On the distance between roots of integer polynomials, Proc. Edinb. Math. Soc. 47 (2004), 553–556.10.1017/S0013091503000257Suche in Google Scholar

[5] Bugeaud, Y.—Mignotte, M.: Polynomial root separation, Int. J. Number Theory 6 (2010), 587–602.10.1142/S1793042110003083Suche in Google Scholar

[6] Dubickas, A.: On the distance between two algebraic numbers, Bull. Malays. Math. Sci. Soc. 43 (2020), 3049–3064.10.1007/s40840-019-00855-0Suche in Google Scholar

[7] Dujella, A.—Pejković, T.: Root separation for reducible monic quartics, Rend. Semin. Mat. Univ. Padova 126 (2011), 63–72.10.4171/RSMUP/126-4Suche in Google Scholar

[8] Evertse, J.-H.: Distances between the conjugates of an algebraic number, Publ. Math. Debrecen 65 (2004), 323–340.10.5486/PMD.2004.3313Suche in Google Scholar

[9] Götze, F.—Zaporozhets, D.: Discriminant and root separation of integral polynomials, J. Math. Sci. (N.Y.) 219 (2016), 700–706.10.1007/s10958-016-3139-9Suche in Google Scholar

[10] Koiran, P.: Root separation for trinomials, J. Symb. Comp. 95 (2019), 151–161.10.1016/j.jsc.2019.02.004Suche in Google Scholar

[11] Landau, E.: Sur quelques théorémes de M. Petrovic relatifs aux zéros des fonctions analytiques, Bull. Soc. Math. France 33 (1905), 251–261.10.24033/bsmf.760Suche in Google Scholar

[12] Mahler, K.: On the zeros of the derivative of a polynomial, Proc. Roy. Soc. London Ser. A 264 (1961), 145–154.10.1098/rspa.1961.0189Suche in Google Scholar

[13] Mahler, K.: An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1964), 257–262.10.1307/mmj/1028999140Suche in Google Scholar

[14] Prasolov, V. V.: Polynomials. Algorithms and Computation in Mathematics 11, Springer, Berlin, 2010.Suche in Google Scholar

[15] Rahman, Q. I.—Schmeisser, G.: Analytic Theory of Polynomials. London Math. Soc. Monogr. Ser. 26, Oxford University Press, 2002.10.1093/oso/9780198534938.001.0001Suche in Google Scholar

[16] Schinzel, A.: Polynomials with Special Regard to Reducibility. Encyclopedia Math. Appl. 77, Cambridge University Press, 2000.10.1017/CBO9780511542916Suche in Google Scholar

[17] Schönhage, A.: Polynomial root separation examples, J. Symbolic Comput. 41 (2006), 1080–1090.10.1016/j.jsc.2006.06.003Suche in Google Scholar

Received: 2019-12-09
Accepted: 2020-02-22
Published Online: 2020-09-27
Published in Print: 2020-10-27

© 2020 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0415/pdf
Button zum nach oben scrollen