Startseite Mathematik Asymptotic behavior of the record values in a stationary Gaussian sequence, with applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Asymptotic behavior of the record values in a stationary Gaussian sequence, with applications

  • Haroon M. Barakat EMAIL logo und M. A. Abd Elgawad
Veröffentlicht/Copyright: 21. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we study the limit distributions of upper and lower record values of a stationary Gaussian sequence under an equi-correlated set up. Moreover, the class of limit distribution functions (df’s) of the joint upper (and the lower) record values of a stationary Gaussian sequence is fully characterized. As an application of this result, the sufficient conditions for the weak convergence of the record quasi-range, record quasi-mid-range, record extremal quasi-quotient and record extremal quasi-product are obtained. Moreover, the classes of the non-degenerate limit df’s of these statistics are derived.

  1. Communicated by Gejza Wimmer

Acknowledgement

The authors would like to thank Professor Gejza Wimmer, as well as the anonymous referees for constructive suggestions and comments that lead to improvement of the readability of the paper.

References

[1] Ahsanullah, M.: Record Statistics, Nova Science Publishers, Inc, 1995.Suche in Google Scholar

[2] Arnold, B. C.—Balakrishnan, N.—Nagaraja, H. N.: Records, New York: Wiley, 1998.10.1002/9781118150412Suche in Google Scholar

[3] Ballerini, R.—Resnick, S. I.: Records from improving populations, J. Appl. Probab. 22 (1987), 487–502.10.2307/3213855Suche in Google Scholar

[4] Barakat, H. M.: Weak limit of the sample extremal quotient, Austral. & New Zealand J. of Statist. 40(1) (1998), 83–93.10.1111/1467-842X.00009Suche in Google Scholar

[5] Barakat, H. M.: Measuring the asymptotic dependence between generalized order statistics, J. Stat. Theory Appl. (JSTA) 6 (2)(2007), 106–117.Suche in Google Scholar

[6] Barakat, H. M.: Asymptotic behavior of the record value sequence, J. Korean Statist. Soc. 41 (2012), 369–374.10.1016/j.jkss.2011.12.002Suche in Google Scholar

[7] Barakat, H. M.—Abd Elgawad, M. A.: Asymptotic behavior of the joint record values, with applications, Stat. Prob. Lett. 124 (2017), 13–21.10.1016/j.spl.2016.12.020Suche in Google Scholar

[8] Barakat, H. M.—Nigm, E. M.: Weak limits of sample geometric range, J. Indian Statist. Assoc. 34 (1996), 85–95.Suche in Google Scholar

[9] Barakat, H. M.—Abd Elgawad, M. A. —Yan, T.: Asymptotic behavior of record values with random indices, ProbStat Forum 10 (2017a), 16–22.Suche in Google Scholar

[10] Barakat, H. M.—Nigm, E. M.—Abo Zaid, E. O.: Limit distributions of order statistics with random indices in a stationary Gaussian sequence, Comm. Statist. Theory Methods 46 (2017b), 7099–7113.10.1080/03610926.2016.1148732Suche in Google Scholar

[11] Barakat, H. M.—Nigm, E. M.—Abo Zaid, E. O.: Limit distributions of generalized order statistics in a stationary Gaussian sequence, Quaest. Math. 41(5) (2018), 629–642.10.2989/16073606.2017.1394395Suche in Google Scholar

[12] Chandler, K. N.: The distribution and frequency of record values, J. Roy. Statist. Soc. Ser. B14 (1952), 220–228.10.1111/j.2517-6161.1952.tb00115.xSuche in Google Scholar

[13] De Haan, L.: Weak limits of sample range, J. Appl. Probab. 11 (1974), 836–841.10.1017/S0001867800045201Suche in Google Scholar

[14] El Arrouchi, M.: Characterization of tail distributions based on record values by using the Beurling’s Tauberian theorem, Extremes 20 (2017), 111–120.10.1007/s10687-016-0267-zSuche in Google Scholar

[15] Feller, W.: An Introduction to Probability Theory and its Applications, Vol. 2, John Wiley & Sons. Inc. (Wiley Eastern University edition), 1979.Suche in Google Scholar

[16] Galambos, J.: The Asymptotic Theory of Extreme Order Statistics, 2nd edition, Kreiger, 1987.Suche in Google Scholar

[17] Gut, A.—Stadtmüller, U.: Limit theorems for counting variables based on records and extremes, Extremes 20(1) (2017), 33–52.10.1007/s10687-016-0269-xSuche in Google Scholar

[18] Leadbetter, M. R.—Lindgren, G.—Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes, Springer, New York, 1983.10.1007/978-1-4612-5449-2Suche in Google Scholar

[19] Nevzorov, V. B.: Asymptotically distributions of records in non-stationary schemes, J. Statist. Plann. Inf. 45 (1995), 261–273.10.1016/0378-3758(94)00076-XSuche in Google Scholar

[20] Nevzorov, V. B.: Records: Mathematical Theory, AMS, Providence, Rhode Island, 2001.10.1090/mmono/194Suche in Google Scholar

[21] Resnick, S. I.: Limit laws for record values, Stochastic Process. Appl. 1 (1973), 67–82.10.1016/0304-4149(73)90033-1Suche in Google Scholar

[22] Yang, M. C. K.: On the distribution of the inter-record times in an increasing population, J. Appl. Probab. 12 (1975), 148–154.10.2307/3212417Suche in Google Scholar

Received: 2018-05-03
Accepted: 2018-09-10
Published Online: 2019-05-21
Published in Print: 2019-06-26

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0259/pdf?lang=de
Button zum nach oben scrollen