Startseite A class of topological spaces between the classes of regular and urysohn spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A class of topological spaces between the classes of regular and urysohn spaces

  • Dimitrios N. Georgiou EMAIL logo und Athanasios C. Megaritis
Veröffentlicht/Copyright: 22. September 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The notion of rU-space is given and investigated. A space X is said to be a rU-space if X is a Hausdorff space and for every xX and every open neighbourhood V of x there exists an open neighbourhood U of x such that U ⊆ Cl(V) and Bd(U) ⊆ V. The class of rU-spaces is properly placed between the classes of regular and Urysohn spaces.

MSC 2010: Primary 54D10; 54D15

(Communicated by Ľubica Holá)


Acknowledgement

The authors would like to thank the referee for the valuable comments and suggestions that improved the quality of the paper.

References

[1] Aull, C. E.: Paracompact subsets. In: 1967 General Topology and its Relations to Modern Analysis and Algebra, II (Proc. Second Prague Topological Sympos., 1966), Academia, Prague, pp. 45–51.10.1016/B978-1-4831-9850-7.50017-5Suche in Google Scholar

[2] Arhangel’skii, A. V.: Relative topological properties and relative topological spaces. In: Proceedings of the International Conference on Convergence Theory (Dijon, 1994), Topology Appl. 70 (1996), pp. 87–99.10.1016/0166-8641(95)00086-0Suche in Google Scholar

[3] Buck, R. E.: Some weaker monotone separation and basis properties, Topology Appl. 69 (1996), 1–12.10.1016/0166-8641(95)00069-0Suche in Google Scholar

[4] Engelking, R.: General Topology. Sigma Ser. Appl. Math. 6, Heldermann Verlag, Berlin, 1989.Suche in Google Scholar

[5] Iliadis, S. D.: Universal Spaces and Mappings. North-Holland Mathematics Studies 198, Elsevier Science B.V., Amsterdam, 2005.Suche in Google Scholar

[6] Miller, G. G.: Countable connected spaces, Proc. Amer. Math. Soc. 26 (1970), 355–360.10.1090/S0002-9939-1970-0263005-0Suche in Google Scholar

[7] Munkres, J. R.: Topology: A First Course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.Suche in Google Scholar

[8] Ori, R. G.—Rajagopalan, M.: On countable connected locally connected almost regular Urysohn spaces, Topology Appl. 17 (1984), 157–171.10.1016/0166-8641(84)90039-7Suche in Google Scholar

[9] Rosenstein, J. G.: Linear Orderings. Pure Appl. Math. 98, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.Suche in Google Scholar

[10] Steen, L. A.—Seebach, J. A., Jr.: Counterexamples in Topology, Reprint of the second edition (1978), Dover Publications, Inc., Mineola, NY, 1995.10.1007/978-1-4612-6290-9Suche in Google Scholar

[11] Stone, M. H.: Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375–481.10.1090/S0002-9947-1937-1501905-7Suche in Google Scholar

[12] Thomas, J. P.: Associated regular spaces, Canad. J. Math. 20 (1968), 1087–1092.10.4153/CJM-1968-105-6Suche in Google Scholar

[13] Tzannes, V.: Three countable connected spaces, Colloq. Math. 56 (1988), 267–279.10.4064/cm-56-2-267-279Suche in Google Scholar

[14] Urysohn, P.: Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann. 94 (1925), 262–295.10.1007/BF01208659Suche in Google Scholar

[15] Willard, S.: General Topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970.Suche in Google Scholar

Received: 2015-10-9
Accepted: 2016-1-14
Published Online: 2017-9-22
Published in Print: 2017-10-26

© 2017 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0046/html
Button zum nach oben scrollen