Startseite Properties of non-associative MV-algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Properties of non-associative MV-algebras

  • Ivan Chajda EMAIL logo und Helmut Länger
Veröffentlicht/Copyright: 22. September 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Non-associative MV-algebras (NMV-algebras) (A, ⊕, ¬, 0) were introduced in [CHAJDA, I.—KÜHR, J.: A non-associative generalization of MV-algebras, Math. Slovaca 57 (2007), 301–312]. In the present paper we prove some properties of these algebras, investigate when intervals of the form [a, 1] can be made into NMV-algebras in some natural way and consider idempotent elements and derivations of NMV-algebras. Moreover, we study decompositions of NMV-algebras and characterize the congruences on NMV-algebras by means of so-called filters.


Support of the research by the Austrian Science Fund (FWF), project I 1923-N25, and the Czech Science Foundation (GAČR), project 15-34697L, as well as by ÖAD, project CZ 04/2017, is gratefully acknowledged.



(Communicated by Sylvia Pulmannová)


References

[1] Alshehri, N. O.: Derivations of MV-algebras, Internat. J. Math. Math. Sci. (2010), Art. ID 312027, 7 pp.10.1155/2010/312027Suche in Google Scholar

[2] Botur, M.—Halaš, R.: Commutative basic algebras and non-associative fuzzy logics, Arch. Math. Logic 48 (2009), 243–255.10.1007/s00153-009-0125-7Suche in Google Scholar

[3] Chajda, I.—Eigenthaler, G.—Länger, H.: Congruence Classes in Universal Algebra, Heldermann, Lemgo, 2012.Suche in Google Scholar

[4] Chajda, I.—Kühr, J.: A non-associative generalization of MV-algebras, Math. Slovaca 57 (2007), 301–312.10.2478/s12175-007-0024-5Suche in Google Scholar

[5] Cignoli, R. L. O.—D’ottaviano, I. M. L.—Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends Log. Stud. Log. Libr., Kluwer, Dordrecht, 2000.10.1007/978-94-015-9480-6Suche in Google Scholar

[6] Ferrari, L.: On derivations of lattices, Pure Math. Appl. 12 (2001), 365–382.Suche in Google Scholar

[7] Krňávek, J.—Kühr, J.: A note on derivations on basic algebras, Soft Comput. 19 (2015), 1765–1771.10.1007/s00500-014-1586-0Suche in Google Scholar

[8] Snášel, V.: λ-lattices, Math. Bohemica 122 (1997), 267–272.10.21136/MB.1997.126144Suche in Google Scholar

[9] Yazarli, H.: A note on derivations in MV-algebras, Miskolc Math. Notes 14 (2013), 345–354.10.18514/MMN.2013.420Suche in Google Scholar

Received: 2015-8-3
Accepted: 2016-2-22
Published Online: 2017-9-22
Published in Print: 2017-10-26

© 2017 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0035/html
Button zum nach oben scrollen