Abstract
In this paper, we investigate the existence and uniqueness of a fixed point of certain contraction via auxiliary functions in the context of complete Branciari metric spaces endowed with a transitive binary relation. Our results unify and extend some existing fixed point results in the related literature.
References
[1] Aydi, H.—Karapinar, E.—Samet, B.: Fixed points for generalized α, Ψ-contractions on generalized metric spaces, J. Inequal. Appl. (2014).10.1186/1029-242X-2014-229Suche in Google Scholar
[2] Aydi, H.—Karapinar, E.—Lakzian, H.: Fixed point results on the class of generalized metric spaces, Math. Sciences (2012), 6:46.10.1186/2251-7456-6-46Suche in Google Scholar
[3] Berzig, M.: Coincidence and common fixed point results on metric spaces endowed with an arbitrary binary relation and applications, J. Fixed Point Theory Appl. 12 (2013), 221–238.10.1007/s11784-013-0094-7Suche in Google Scholar
[4] Berzig, M.—Karapinar, E.: Fixed point results for αΨ, βΨ-contractive mappings for a generalized altering distance, Fixed Point Theory Appl. 2013 (2013), 2013:205.10.1186/1687-1812-2013-205Suche in Google Scholar
[5] Berzig, M.—Rus, M-D.: Fixed point theorems for α -contractive mappings of Meir-Keeler type and applications, Nonlinear Anal. Model. Control. 19 (2014), 178–198.10.15388/NA.2014.2.3Suche in Google Scholar
[6] Berzig, M.—Karapinar, E.—Roldán, A.: Discussion on generalized-αΨ, βϕ-contractive mappings via generalized altering distance function and related fixed point theorems, Abstr. Appl. Anal. 2013 (2013), Art. ID 634371.10.1186/1687-1812-2013-205Suche in Google Scholar
[7] Branciari, A.: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. (Debr.) 57 (2000), 31–37.10.5486/PMD.2000.2133Suche in Google Scholar
[8] Erhan, I. M.—Karapinar, E.—Sekulić, T.: Fixed points of Ψ,φ contractions on rectangular metric spaces, Fixed Point Theory Appl. 2012 (2012), 2012:138.10.1186/1687-1812-2012-138Suche in Google Scholar
[9] Erhan, I. M.—Karapinar, E.—Roldán-lópez-de-hierro, A. F.—Shahzad, N.: Remarks on `Coupled coincidence point results for a generalized compatible pair with applications’, Fixed Point Theory Appl. 2014 (2014), Art. ID 2014:207.10.1186/1687-1812-2014-207Suche in Google Scholar
[10] Jleli, M.—Samet, B.: The Kannan’s fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl. 2 (2009), 161–167.10.22436/jnsa.002.03.03Suche in Google Scholar
[11] Jleli, M.—Karapinar, E.—Samet, B.: Further generalizations of the Banach contraction principle, J. Inequal. Appl. (2014), 2014:439.10.1186/1029-242X-2014-439Suche in Google Scholar
[12] Jleli, M.—Samet, B.: A new generalization of the Banach contraction principle, J. Inequal. Appl. (2014), 2014:38.10.1186/1029-242X-2014-38Suche in Google Scholar
[13] Kadelburg, Z.—Radenović, S.: On generalized metric spaces: a survey, TWMS J. Pure Appl. Math. 5 (2014), 3–13.Suche in Google Scholar
[14] Karapinar, E.: Discussion on contractions on generalized metric spaces, Abstr. Appl. Anal. 2014 (2014).10.1186/1029-242X-2014-423Suche in Google Scholar
[15] Karapinar, E.: Fixed points results for α-admissible mapping of integral type on generalized metric spaces, Abstr. Appl. Anal. 2014 (2014), Art. ID 141409.10.1155/2015/141409Suche in Google Scholar
[16] Kirk, W. A.—Shahzad, N.: Generalized metrics and Caristi’s theorem, Fixed Point Theory Appl. (2013), 2013:129.10.1186/1687-1812-2013-129Suche in Google Scholar
[17] La Rosa, V.—Vetro, P.: Common fixed points for α-Ψ-ϕ-contractions in generalized metric spaces, Nonlinear Anal. Model. Control 19 (2014), 43–54.10.15388/NA.2014.1.3Suche in Google Scholar
[18] Samet, B.—Turinici, M.: Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal. 13 (2012), 82–97.Suche in Google Scholar
[19] Sarma, I. R.—Rao, J. M.—Rao, S. S.: Contractions over generalized metric spaces, J. Nonlinear Sci. Appl. 2 (2009), 180–182.10.22436/jnsa.002.03.06Suche in Google Scholar
[20] Suzuki, T.: Generalized metric space do not have the compatible topology, Abstr. Appl. Anal. 2014 (2014), Art. ID 458098.10.1155/2014/458098Suche in Google Scholar
[21] Turinici, M.: Functional contractions in local Branciari metric spaces, arXiv:1208.4610v1 [math.GN] 22 Aug 2012.10.1007/s11565-012-0164-6Suche in Google Scholar
© 2017 Mathematical Institute Slovak Academy of Sciences
Artikel in diesem Heft
- Cyclic and rotational latin hybrid triple systems
- Notes on mildly distributive semilattices
- On generalized completely distributive posets
- Properties of non-associative MV-algebras
- On the upper and lower exponential density functions
- Quadratic permutations, complete mappings and mutually orthogonal latin squares
- On F-groups with the central factor of order p4
- Comparison of some families of real functions in porosity terms
- Negative interest rates: why and how?
- Homoclinic and heteroclinic motions in hybrid systems with impacts
- Some fixed point theorems in Branciari metric spaces
- S-essential spectra and measure of noncompactness
- Unified approach to graphs and metric spaces
- On structural properties of porouscontinuous functions
- A class of topological spaces between the classes of regular and urysohn spaces
- On The betti numbers of oriented Grassmannians and independent semi-invariants of binary forms
- Generalized Baskakov type operators
Artikel in diesem Heft
- Cyclic and rotational latin hybrid triple systems
- Notes on mildly distributive semilattices
- On generalized completely distributive posets
- Properties of non-associative MV-algebras
- On the upper and lower exponential density functions
- Quadratic permutations, complete mappings and mutually orthogonal latin squares
- On F-groups with the central factor of order p4
- Comparison of some families of real functions in porosity terms
- Negative interest rates: why and how?
- Homoclinic and heteroclinic motions in hybrid systems with impacts
- Some fixed point theorems in Branciari metric spaces
- S-essential spectra and measure of noncompactness
- Unified approach to graphs and metric spaces
- On structural properties of porouscontinuous functions
- A class of topological spaces between the classes of regular and urysohn spaces
- On The betti numbers of oriented Grassmannians and independent semi-invariants of binary forms
- Generalized Baskakov type operators