Startseite Mathematik On the “bang-bang” principle for a class of Riemann-Liouville fractional semilinear evolution inclusions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the “bang-bang” principle for a class of Riemann-Liouville fractional semilinear evolution inclusions

  • Zhenhai Liu EMAIL logo , Maojun Bin und Xiaoyou Liu
Veröffentlicht/Copyright: 30. Dezember 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we research the existence of solutions for a class of Riemann-Liouville fractional evolution inclusions with nonconvex right hand side. Our main results obtain the existence of the extreme solution and the relationship of the solution sets between the original problem and the convexified problem. In the end, we give an example to illustrate the applications of the abstract results.


(Communicated by Michal Fečkan)


Funding statement: This work was supported by NNSF of China Grant No. 11671101 and Special Funds of Guangxi Distinguished Experts Construction Engineering

References

[1] Aubin, J. P.—Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin/New York/Tokyo, 1984.10.1007/978-3-642-69512-4Suche in Google Scholar

[2] Bazhlekova, E.: Existence and uniqueness results for a fractional evolution equation in Hilbert space, Fract. Calc. Appl. Anal. 15 (2012), 232–243.10.2478/s13540-012-0017-0Suche in Google Scholar

[3] Bressan, A.: Differential inclusions with non-closed, non-convex right hand side, Diff. Integral Equat. 3 (1990), 633–638.Suche in Google Scholar

[4] Deimling, K.: Multivalued Differential Equations, De Gruyter, Berlin, 1992.10.1515/9783110874228Suche in Google Scholar

[5] Fryszkowski, A.: Continuous selections for a class of nonconvex multivalued maps, Studia Math. 76 (1983), 163–174.10.4064/sm-76-2-163-174Suche in Google Scholar

[6] Fečkan, M.—Wang, J. R.—Zhou, Y.: Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators, J. Optim. Theory Appl. 156 (2013), 79–95.10.1007/s10957-012-0174-7Suche in Google Scholar

[7] Heymans, N.—Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta. 45 (2006), 765–771.10.1007/s00397-005-0043-5Suche in Google Scholar

[8] Kilbas, A. A.—Srivastava, H. M.—Trujillo, J. J.: Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, Elsevier, B. V. Amsterdam, 2006.Suche in Google Scholar

[9] Himmelberg, C. J.: Measurable relations, Fund. Math. 87 (1975), 53–72.10.4064/fm-87-1-53-72Suche in Google Scholar

[10] Hu, S.—Papageorgiou, N. S.: Handbook of multivalued Analysis: Volume I Theory, Kluwer Academic Publishers, Dordrecht Boston/London, 1997.10.1007/978-1-4615-6359-4Suche in Google Scholar

[11] Liu, X. Y.—Liu, Z. H.: On the “bang-bang” principle for a class of fractional semilinear evolution inclusions, Proc. Royal Soci. Edinburgh 144A (2014), 333–349.10.1017/S030821051200128XSuche in Google Scholar

[12] Lightbourne, J. H.—Rankin, S. M.: A partial functional differential equation of Sobolev type, J. Math. Anal. Appl. 93 (1983), 328–337.10.1016/0022-247X(83)90178-6Suche in Google Scholar

[13] Miller, K. S.—Ross, B.: An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.Suche in Google Scholar

[14] Papageorgiou, N. S.: On the “bang-bang” principle for nonlinear evolution inclusions, Aequationes Math. 45 (1993), 267–280.10.1007/BF01855884Suche in Google Scholar

[15] Pan, X.—Li, X .W.—Zhao, J.: Solvability and optimal controls of semilinear Riemann-Liouville fractional differential equations, Abstr. Applied Anal. Volume 2014, Article ID 216919, 11 pages.10.1155/2014/216919Suche in Google Scholar

[16] Podlubny, I.: Fractional Differential Equations, Academic Press, San Diego, 1999.Suche in Google Scholar

[17] Samko, S .G.—Kilbas, A. A.—Marichev, O. I.: Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993.Suche in Google Scholar

[18] Suslov, S. I.: Nonlinear bang-bang principle in Rn, Mat. Zametki 49:5 (1991), 110–116; Engl. transl., Math. Notes 49 (1991), 518-523.10.1007/BF01142650Suche in Google Scholar

[19] Tolstonogov, A. A.: Extremal selections of multivalued mappings and the “bang-bang” principle for evolution inclusions, Dokl. Akad. Nauk SSSR 317 (1991), 589–593; Engl. transl., Soviet Math. Dokl. 43 (1991), 481–485.Suche in Google Scholar

[20] Tolstonogov, A. A. Relaxation in non-convex control problems described by first-order evolution equations, Math. Sb. 190 (1999), 135–160; Engl. transl., Sb. Math. 190 (1999), 1689–1714.10.1070/SM1999v190n11ABEH000441Suche in Google Scholar

[21] Tolstonogov, A. A.—Tolstonogov, D. A.: On the “bang-bang” principle for nonlinear evolution inclusions, Nonlinear Differ. Equa. Appl. 6 (1999), 101–118.10.1007/s000300050067Suche in Google Scholar

[22] Tolstonogov, A. A.—Tolstonogov, D. A.: Lp-continuous extreme selectors of multifunctions with decomposable values: Existence theorems, Set-Valued Anal. 4 (1996), 173–203.10.1007/BF00425964Suche in Google Scholar

[23] Tolstonogov, A. A.—Tolstonogov, D. A.: Lp-continuous extreme selectors of multifunctions with decomposable values: Relaxation theorems, Set-Valued Anal. 4 (1996), 237–269.10.1007/BF00419367Suche in Google Scholar

[24] Wu, L.—Zhu, J.: Fractional Cauchy problem with Riemann-Liouville derivative on time scales, Abstr. Applied Anal. (2013), Article ID 795701, 23 pages.10.1155/2013/795701Suche in Google Scholar

[25] Ye, H. P.—Gao, J. M.—Ding, Y. S.: A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl. 328 (2007), 1075–1081.10.1016/j.jmaa.2006.05.061Suche in Google Scholar

[26] Zhou, Q.J.: On the solution set of differential inclusions in Banach Space, J. Diff. Equat. 93 (1991), 213–237.10.1016/0022-0396(91)90011-WSuche in Google Scholar

[27] Zhou, Y.—Zhang, L.—Shen, X. H.: Existence of mild solutions for fractional evolution equations, J. Integral Equat. Appl. 25 (2013), 557–586.10.1216/JIE-2013-25-4-557Suche in Google Scholar

[28] Zhu, J.: On the solution set of differential inclusions in Banach space, J. Differ. Equat. 93 (1991), 213–237.10.1016/0022-0396(91)90011-WSuche in Google Scholar

Received: 2013-8-28
Accepted: 2014-10-13
Published Online: 2016-12-30
Published in Print: 2016-12-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. A triple representation of lattice effect algebras
  2. Periods of morgan-voyce sequences and elliptic curves
  3. Multiplicative generalized derivations on ideals in semiprime rings
  4. A few remarks on Poincaré-Perron solutions and regularly varying solutions
  5. Applications of extremal theorem and radius equation for a class of analytic functions
  6. On the “bang-bang” principle for a class of Riemann-Liouville fractional semilinear evolution inclusions
  7. New criteria for global exponential stability of linear time-varying volterra difference equations
  8. On approximation of functions by some hump matrix means of Fourier series
  9. Pseudo-amenability and pseudo-contractibility for certain products of Banach algebras
  10. Poisson kernels on semi-direct products of abelian groups
  11. Locally convex projective limit cones
  12. On the properties (wL) and (wV)
  13. On the existence of solutions for quadratic integral equations in Orlicz spaces
  14. Existence and uniqueness of best proximity points under rational contractivity conditions
  15. Almost Weyl structures on null geometry in indefinite Kenmotsu manifolds
  16. On the internal approach to differential equations 3. Infinitesimal symmetries
  17. A Characterization of the discontinuity point set of strongly separately continuous functions on products
  18. Wick differential and Poisson equations associated to the 𝚀𝚆𝙽-Euler operator acting on generalized operators
  19. Multivariate EIV models
  20. On codes over 𝓡k, m and constructions for new binary self-dual codes
  21. Domination number of total graphs
Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2016-0226/html?lang=de
Button zum nach oben scrollen