Startseite On the existence of solutions for quadratic integral equations in Orlicz spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the existence of solutions for quadratic integral equations in Orlicz spaces

  • Mieczysław Cichoń EMAIL logo und Mohamed M. A. Metwali
Veröffentlicht/Copyright: 30. Dezember 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study quadratic integral equations in Orlicz spaces on the interval [a, b]. We relate growth conditions with appropriate spaces of solutions and then we investigate different cases. Our approach allows to consider discontinuous solutions as well as to unify the results for both quadratic and classical integral equations. Many different types of growth conditions for investigated functions are considered.


Communicated by: Michal Fečkan



(Communicated by Michal Fečkan )


References

[1] Alexopoulos, J.: De La Vallée Poussin’s theorem and weakly compact sets in Orlicz spaces, Quaest. Math. 17 (1994), 231–248.10.1080/16073606.1994.9631762Suche in Google Scholar

[2] Agarwal, R. P.—O’Regan, D.—Wong, P.: Constant-sign solutions of a system of Volterra integral equations in Orlicz spaces, J. Integral Equations Appl. 20 (2008), 337–378.10.1007/978-3-319-01255-1_16Suche in Google Scholar

[3] Agarwal, R. P.—O’Regan, D.—Wong, P.: Solutions of a system of integral equations in Orlicz spaces, J. Integral Equations Appl. 21 (2009), 469–498.10.1007/978-3-319-01255-1_17Suche in Google Scholar

[4] Anichini, G.—Conti, G.: Existence of solutions of some quadratic integral equations, Opuscula Math. 28 (2008), 433–440.Suche in Google Scholar

[5] Appell, J.: The importance of being Orlicz, Banach Center Publ. 64 (2004), 21–28.10.4064/bc64-0-2Suche in Google Scholar

[6] Appell, J.—Zabreiko, P. P.: Nonlinear Superposition Operators, Cambridge University Press, Cambridge, 1990.10.1017/CBO9780511897450Suche in Google Scholar

[7] Argyros, I. K.: On a class of quadratic integral equations with perturbations, Functiones et Approximatio 20 (1992), 51–63.Suche in Google Scholar

[8] Banaś, J.: Integrable solutions of Hammerstein and Urysohn integral equations, J. Aust. Math. Soc. 46 (1989), 61–68.10.1017/S1446788700030378Suche in Google Scholar

[9] Banaś, J.: Applications of measures of weak noncompactness and some classes of operators in the theory of functional equations in the Lebesgue space, Nonlinear Anal. 30 (1997), 3283–3293.10.1016/S0362-546X(96)00157-5Suche in Google Scholar

[10] Banaś, J.—Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Math. 60, M. Dekker, New York-Basel, 1980.Suche in Google Scholar

[11] Banaś, J.—Sadarangani, K.: Solutions of some functional-integral equations in Banach algebras, Math. Comput. Modelling 38 (2003), 245–250.10.1016/S0895-7177(03)90084-7Suche in Google Scholar

[12] Benkirane, A.—Elmahi, A.: An existence theorem for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Anal. 36 (1999), 11–24.10.1016/S0362-546X(97)00612-3Suche in Google Scholar

[13] Berger, J.—Robert, J.: Strongly nonlinear equations of Hammerstein type, J. Lond. Math. Soc. (2) 15 (1977), 277–287.10.1112/jlms/s2-15.2.277Suche in Google Scholar

[14] Brézis, H.—Browder, F.: Existence theorems for nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc. 81 (1975), 73–78.10.1090/S0002-9904-1975-13641-XSuche in Google Scholar

[15] Caballero, J.—Mingarelli, A. B.—Sadarangani, K.: Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electron. J. Differential Equations 57 (2006), 1–11.Suche in Google Scholar

[16] Chandrasekhar, S.: Radiative Transfer, Dover Publications, New York, 1960. Suche in Google Scholar

[17] Cheng, I.-Y. S.—Kozak, J. J.: Application of the theory of Orlicz spaces to statistical mechanics. I. Integral equations, J. Math. Phys. 13 (1972), 51–58.10.1063/1.1665850Suche in Google Scholar

[18] Cichoń, M.—Metwali, M.: On quadratic integral equations in Orlicz spaces, J. Math. Anal. Appl. 387 (2012), 419–432.10.1016/j.jmaa.2011.09.013Suche in Google Scholar

[19] Cichoń, M.—Metwali, M.: On monotonic integrable solutions for quadratic functional integral equations, Mediterr. J. Math. 10 (2013), 909–926.10.1007/s00009-012-0218-0Suche in Google Scholar

[20] Deimling, K.: Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.10.1007/978-3-662-00547-7Suche in Google Scholar

[21] Erzakova, N.: On measures of non-compactness in regular spaces, Z. Anal. Anwend. 15 (1996), 299–307.10.4171/ZAA/701Suche in Google Scholar

[22] Erzakova, N.: Compactness in measure and measure of noncompactness, Sib. Math. J. 38 (1997), 926–928.10.1007/BF02673034Suche in Google Scholar

[23] Gorenflo, R.—Vessela, S.: Abel Integral Equations. Lecture Notes in Math. 1461, Springer, Berlin-Heidelberg, 1991.10.1007/BFb0084665Suche in Google Scholar

[24] Hudzik, H.: Musielak-Orlicz algebras, Rend. Circ. Mat. Palermo (2) Suppl. 14 (1987), 335–338 (Proceedings of the 14th Winter School on Abstract Analysis, Srní, 1986).Suche in Google Scholar

[25] Kalton, N.: Subalgebras of Orlicz spaces and related algebras of analytic functions, Ark. Mat. 18 (1980), 223–254.10.1007/BF02384692Suche in Google Scholar

[26] Kantorovich, L. V.—Akilov, G. P.: Functional Analysis, Pergamon Press, Oxford, 1982.Suche in Google Scholar

[27] Krasnosel’skii, M. A.—Rutitskii, YU.: Convex Functions and Orlicz Spaces, Nordhoff, Gröningen, 1961.Suche in Google Scholar

[28] Krasnosel’skii, M. A.—Zabreiko, P. P.—Pustyl’nik, J. I.—Sobolevskii, P. E.: Integral Operators in Spaces of Summable Functions, Noordhoff, Leyden, 1976.10.1007/978-94-010-1542-4Suche in Google Scholar

[29] Maleknejad, K.—Nouri, K.—Mollapourasl, R.: Existence of solutions for some nonlinear integral equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 2559–2564.10.1016/j.cnsns.2008.10.019Suche in Google Scholar

[30] O’Regan, D.: Solutions in Orlicz spaces to Urysohn integral equations, Math. Proc. Roy. Ir. Acad. Sect. A 96 (1996), 67–78.Suche in Google Scholar

[31] Orlicz, W.—Szufla, S.: On some classes of nonlinear Volterra integral equations in Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982), 239–250.Suche in Google Scholar

[32] Płuciennik, R.: The superposition operator in Musielak-Orlicz spaces of vector-valued functions. Rend. Circ. Mat. Palermo (2) Suppl. 14 (1987), 411–417 (Proceedings of the 14th Winter School on Abstract Analysis, Srní, 1986).Suche in Google Scholar

[33] Płuciennik, R.—Szufla, S.: Nonlinear Volterra integral equations in Orlicz spaces, Demonstratio Math. 17 (1984), 515–532.10.1515/dema-1984-0221Suche in Google Scholar

[34] Rao, M. M.—Ren, Z. D.: Applications of Orlicz Spaces, Marcel Dekker, New York, 2002.10.1201/9780203910863Suche in Google Scholar

[35] Sołtysiak, A.—Szufla, S.: Existence theorems for Lφ-solutions of the Hammerstein integral equation in Banach spaces, Comment. Math. Prace Mat. 30 (1990), 177–190.Suche in Google Scholar

[36] Shragin, I. V.: The boundedness of the Nemytskii operator in Orlicz spaces, Kishinev. Gos. Univ. Uchen. Zap. 50 (1962), 119–122.Suche in Google Scholar

[37] Väth, M: Ideal Spaces. Lecture Notes in Math. 1664, Springer, Berlin-Heidelberg, 1997.10.1007/BFb0093548Suche in Google Scholar

[38] Väth, M: Volterra and Integral Equations of Vector Functions, Marcel Dekker, New York-Basel, 2000.Suche in Google Scholar

Received: 2014-2-3
Accepted: 2014-10-13
Published Online: 2016-12-30
Published in Print: 2016-12-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. A triple representation of lattice effect algebras
  2. Periods of morgan-voyce sequences and elliptic curves
  3. Multiplicative generalized derivations on ideals in semiprime rings
  4. A few remarks on Poincaré-Perron solutions and regularly varying solutions
  5. Applications of extremal theorem and radius equation for a class of analytic functions
  6. On the “bang-bang” principle for a class of Riemann-Liouville fractional semilinear evolution inclusions
  7. New criteria for global exponential stability of linear time-varying volterra difference equations
  8. On approximation of functions by some hump matrix means of Fourier series
  9. Pseudo-amenability and pseudo-contractibility for certain products of Banach algebras
  10. Poisson kernels on semi-direct products of abelian groups
  11. Locally convex projective limit cones
  12. On the properties (wL) and (wV)
  13. On the existence of solutions for quadratic integral equations in Orlicz spaces
  14. Existence and uniqueness of best proximity points under rational contractivity conditions
  15. Almost Weyl structures on null geometry in indefinite Kenmotsu manifolds
  16. On the internal approach to differential equations 3. Infinitesimal symmetries
  17. A Characterization of the discontinuity point set of strongly separately continuous functions on products
  18. Wick differential and Poisson equations associated to the 𝚀𝚆𝙽-Euler operator acting on generalized operators
  19. Multivariate EIV models
  20. On codes over 𝓡k, m and constructions for new binary self-dual codes
  21. Domination number of total graphs
Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2016-0233/html
Button zum nach oben scrollen