Home Poisson kernels on semi-direct products of abelian groups
Article
Licensed
Unlicensed Requires Authentication

Poisson kernels on semi-direct products of abelian groups

  • Richard Penney EMAIL logo and Roman Urban
Published/Copyright: December 30, 2016
Become an author with De Gruyter Brill

Abstract

Let G be a semi direct product G = ℝd ⋊ ℝk. On G we consider a class of second order left-invariant differential operators of the form Lα=j=1de2λj(a)xj2+j=1k(aj22αjaj), where a ∈ ℝk and λ1,..., λd ∈ (ℝk )*. It is known that bounded 𝓛α-harmonic functions on G are precisely the “Poisson integrals” of L∞(ℝd) against the Poisson kernel να which is a smooth function on ℝd. We prove an upper bound of να and its derivatives.


(Communicated by Gregor Dolinar)


Acknowledgement

The authors wishes to thank the anonymous referees for several remarks that improved the overall presentation of the results.

References

[1] van Casteren, J. A.: Feller Semigroups and Evolution Equations. Ser. Concr. Appl. Math. 12, World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2011.10.1142/7871Search in Google Scholar

[2] Baldi, P.—Casadio Tarabusi, E.—Figa-Talamanca, A.—Yor, M.: Non-symmetric hitting distributions on the hyperbolic half-plane and subordinated perpetuities, Rev. Mat. Iberoam. 17 (2001), 587–605.10.4171/RMI/305Search in Google Scholar

[3] Buraczewski, D.—Damek, E.—Hulanicki, A.: Asymptotic behavior of Poisson kernels on NA groups, Comm. Partial Differential Equations 31 (2006), 1547-1589.10.1080/03605300500532921Search in Google Scholar

[4] Damek, E.: Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups, Studia Math. 89 (1988), 169-196.10.4064/sm-89-2-169-196Search in Google Scholar

[5] Damek, E.—Hulanicki, A.: Boundaries for left-invariant subelliptic operators on semidirect products of nilpotent and abelian groups, J. Reine Angew. Math. 411 (1990), 1–38.10.1515/crll.1990.411.1Search in Google Scholar

[6] Damek, E.—Hulanicki, A.: Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group, Studia Math. 101 (1991), 33–68.10.4064/sm-101-1-33-68Search in Google Scholar

[7] Damek, E.—Hulanicki, A.—Urban, R.: Martin boundary for homogeneous Riemannian manifolds of negative curvature at the bottom of the spectrum, Rev. Mat. Iberoam. 17 (2001), 257–293.10.4171/RMI/295Search in Google Scholar

[8] Damek, E.—Hulanicki, A.—Zienkiewicz, J.: Estimates for the Poisson kernels and their derivatives on rank one NA groups, Studia Math. 126 (1997), 115–148.Search in Google Scholar

[9] Dufresne, D.: The distribution of a perpetuity, with application to risk theory and pension funding, Scand. Actuar. J. 9 (1990), 39–79.10.1080/03461238.1990.10413872Search in Google Scholar

[10] Folland, G. B.—Stein, E.: Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, NJ, 1982.10.1515/9780691222455Search in Google Scholar

[11] Matsumoto, H.: Closed form formulae for the heat kernels and the Green functions for the Laplacians on the symmetric spaces of rank one, Bull. Sci. Math. 125 (2001), 553–581.10.1016/S0007-4497(01)01099-5Search in Google Scholar

[12] Matsumoto, H.: Limiting behaviors of the Brownian motions on hyperbolic spaces, Colloq. Math. 119 (2010), 193–215.10.4064/cm119-2-3Search in Google Scholar

[13] Malliavin, P.: Géométrie Différentiale Stochastique. Seminaire de Mathématique Supérieur Eté 1997, No. 64, Les Press de l’Université de Montréal, Montréal, 1978.Search in Google Scholar

[14] Malliavin, M. P.—Malliavin, P.: Factorisation et lois limites de la diffusion horizontale au-dessus d’un espace riemannien symétrique. In: Lecture Notes in Math. 404, Springer-Verlag, New York, 1974, pp. 164–217.10.1007/BFb0060616Search in Google Scholar

[15] Matsumoto, H.—Yor, M.: Exponential functionals of Brownian motion, I. Probability laws at fixed time, Probab. Surv. 2 (2005), 312–347.10.1214/154957805100000159Search in Google Scholar

[16] Matsumoto, H.—Yor, M.: Exponential functionals of Brownian motion, II. Some related diffusion processes, Probab. Surv. 2 (2005), 348–384.10.1214/154957805100000168Search in Google Scholar

[17] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci. 44, Springer-Verlag, New York, 1983.10.1007/978-1-4612-5561-1Search in Google Scholar

[18] Penney, R.—Urban, R.: Estimates for the Poisson kernel on higher rank NA groups, Colloq. Math. 118 (2010), 259–281.10.4064/cm118-1-14Search in Google Scholar

[19] Penney, R.—Urban, R.: An upper bound for the Poisson kernel on higher rank NA groups, Potential Anal. 35 (2011), 373–386.10.1007/s11118-010-9217-6Search in Google Scholar

[20] Penney, R.—Urban, R.: Estimates for the Poisson kernel and the evolution kernel on the Heisenberg group, J. Evol. Equ. 12 (2012), 327–351.10.1007/s00028-011-0134-ySearch in Google Scholar

[21] Penney, R.—Urban, R.: Estimates for the Poisson kernel and the evolution kernel on nilpotent metaabelian groups, Studia Math. 219 (2013), 69–96.10.4064/sm219-1-4Search in Google Scholar

[22] Stroock, D. W.—Varadhan, S. R. S.: Multidimensional diffusion processes. Classics Math., SpringerVerlag, Berlin, 2006.Search in Google Scholar

[23] Tanabe, H.: Equations of evolutions. Monographs and Studies in Math. 6, Pitman, London-San Francisco-Melbourne, 1979.Search in Google Scholar

[24] Taylor, J. C.: Skew products, regular conditional probabilities and stochastic differential equations: a technical remark. In: Séminaire de Probabilité XXVI. Lecture Notes in Math. 1526, Springer, New York, 1992, pp. 299–314.10.1007/BFb0084315Search in Google Scholar

[25] Yor, M.: Exponential Functionals of Brownian Motion and Related Processes. Springer Finance, SpringerVerlag, Berlin, 2001.10.1007/978-3-642-56634-9Search in Google Scholar

Received: 2014-4-23
Accepted: 2015-1-16
Published Online: 2016-12-30
Published in Print: 2016-12-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. A triple representation of lattice effect algebras
  2. Periods of morgan-voyce sequences and elliptic curves
  3. Multiplicative generalized derivations on ideals in semiprime rings
  4. A few remarks on Poincaré-Perron solutions and regularly varying solutions
  5. Applications of extremal theorem and radius equation for a class of analytic functions
  6. On the “bang-bang” principle for a class of Riemann-Liouville fractional semilinear evolution inclusions
  7. New criteria for global exponential stability of linear time-varying volterra difference equations
  8. On approximation of functions by some hump matrix means of Fourier series
  9. Pseudo-amenability and pseudo-contractibility for certain products of Banach algebras
  10. Poisson kernels on semi-direct products of abelian groups
  11. Locally convex projective limit cones
  12. On the properties (wL) and (wV)
  13. On the existence of solutions for quadratic integral equations in Orlicz spaces
  14. Existence and uniqueness of best proximity points under rational contractivity conditions
  15. Almost Weyl structures on null geometry in indefinite Kenmotsu manifolds
  16. On the internal approach to differential equations 3. Infinitesimal symmetries
  17. A Characterization of the discontinuity point set of strongly separately continuous functions on products
  18. Wick differential and Poisson equations associated to the 𝚀𝚆𝙽-Euler operator acting on generalized operators
  19. Multivariate EIV models
  20. On codes over 𝓡k, m and constructions for new binary self-dual codes
  21. Domination number of total graphs
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2016-0230/html
Scroll to top button