Startseite Mathematik Sharp Inequalities for Polygamma Functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sharp Inequalities for Polygamma Functions

  • Bai-Ni Guo EMAIL logo , Feng Qi , Jiao-Lian Zhao und Qiu-Ming Luo
Veröffentlicht/Copyright: 25. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the paper, the authors review some inequalities and the (logarithmically) complete monotonicity concerning the gamma and polygamma functions and, more importantly, present a sharp double inequality for bounding the polygamma function by rational functions.

References

[1] ABRAMOWITZ, M.-STEGUN, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55, U.S. Government Printing Office, Washington, 1965.10.1115/1.3625776Suche in Google Scholar

[2] ALLASIA, G.-GIORDANO, C.-PEČARIĆ, J.: Inequalities for the gamma function relating to asymptotic expasions, Math. Inequal. Appl. 5 (2002), 543-555.Suche in Google Scholar

[3] ALZER, H.: On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), 373-389.10.1090/S0025-5718-97-00807-7Suche in Google Scholar

[4] ALZER, H.: Sharp inequalities for the digamma and polygamma functions, ForumMath. 16 (2004), 181-221.Suche in Google Scholar

[5] ALZER, H.- BATIR, N.: Monotonicity properties of the gamma function, Appl. Math. Lett. 20 (2007), 778-781; http://dx.doi.org/10.1016/j.aml.2006.08.026.10.1016/j.aml.2006.08.026Suche in Google Scholar

[6] ALZER, H.-GRINSHPAN, A. Z.: Inequalities for the gamma and q-gamma functions, J. Approx. Theory 144 (2007), 67-83.10.1016/j.jat.2006.04.008Suche in Google Scholar

[7] ATANASSOV, R. D.-TSOUKROVSKI, U. V.: Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci. 41 (1988), No. 2, 21-23.Suche in Google Scholar

[8] BATIR, N.: An interesting double inequality for Euler’s gamma function, J. Inequal Pure Appl. Math. 5 (2004), No. 4, Art. 97; http://www.emis.de/journals/JIPAM/article452.html.Suche in Google Scholar

[9] BATIR, N.: Inequalities for the gamma function, Arch.Math. (Basel) 91 (2008), 554-563.10.1007/s00013-008-2856-9Suche in Google Scholar

[10] BATIR, N.: On some properties of digamma and polygamma functions, J. Math. Anal. Appl. 328 (2007), 452-465; http://dx.doi.org/10.1016/j.jmaa.2006.05.065.10.1016/j.jmaa.2006.05.065Suche in Google Scholar

[11] BATIR, N.: Some new inequalities for gamma and polygamma functions, J. Inequal. Pure Appl. Math. 6 (2005), No. 4, Art. 103; http://www.emis.de/journals/JIPAM/article577.html.Suche in Google Scholar

[12] BERG, C.: Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (2004), 433-439.10.1007/s00009-004-0022-6Suche in Google Scholar

[13] CHEN, C.-P.-QI, F.: Logarithmically completely monotonic functions relating to the gamma function, J. Math. Anal. Appl. 321 (2006), no. 1, 405-411; http://dx.doi.org/10.1016/j.jmaa.2005.08.056.10.1016/j.jmaa.2005.08.056Suche in Google Scholar

[14] CHU, Y.-M.-ZHANG, X.-M.-TANG, X.-M.: An elementary inequality for psi function, Bull. Inst. Math. Acad. Sin. (N.S.) 3 (2008), 373-380.Suche in Google Scholar

[15] CHU, Y.-M.-ZHANG, X.-M.-ZHANG, Z.-H.: The geometric convexity of a function involving gamma function with applications, Commun. Korean Math. Soc. 25 (2010), 373-383; <http://dx.doi.org/10.4134/CKMS.2010.25.3.373>.Suche in Google Scholar

[16] ELEZOVIĆ, N.-GIORDANO, C.-PEˇCARIĆ, J.: The best bounds in Gautschi’s inequality, Math. Inequal. Appl. 3 (2000), 239-252.Suche in Google Scholar

[17] GRINSHPAN, A. Z.-ISMAIL, M. E. H.: Completely monotonic functions involving the gamma and q-gamma functions, Proc. Amer. Math. Soc. 134 (2006), 1153-1160.10.1090/S0002-9939-05-08050-0Suche in Google Scholar

[18] GUO, B.-N.-QI, F.: A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications, J. Korean Math. Soc. 48 (2011), 655-667; http://dx.doi.org/10.4134/JKMS.2011.48.3.655.10.4134/JKMS.2011.48.3.655Suche in Google Scholar

[19] GUO, B.-N.-CHEN, R.-J.-QI, F.: A class of completely monotonic functions involving the polygamma functions, J. Math. Anal. Approx. Theory 1 (2006), 124-134.Suche in Google Scholar

[20] GUO, B.-N.-QI, F.: A completely monotonic function involving the tri-gamma function and with degree one, Appl. Math. Comput. 218 (2012), 9890-9897; http://dx.doi.org/10.1016/j.amc.2012.03.075.10.1016/j.amc.2012.03.075Suche in Google Scholar

[21] GUO, B.-N.-QI, F.: A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72 (2010), 21-30.Suche in Google Scholar

[22] GUO, B.-N.-QI, F.: An extension of an inequality for ratios of gamma functions, J. Approx. Theory 163 (2011), 1208-1216; http://dx.doi.org/10.1016/j.jat.2011.04.003.10.1016/j.jat.2011.04.003Suche in Google Scholar

[23] GUO, B.-N.-QI, F.: Monotonicity of functions connected with the gamma function and the volume of the unit ball, Integral Transforms Spec. Funct. 23 (2012), 701-708; http://dx.doi.org/10.1080/10652469.2011.627511.10.1080/10652469.2011.627511Suche in Google Scholar

[24] GUO, B.-N.-QI, F.: Refinements of lower bounds for polygamma functions, Proc. Amer. Math. Soc. 141 (2013), 1007-1015; http://dx.doi.org/10.1090/S0002-9939-2012-11387-5.10.1090/S0002-9939-2012-11387-5Suche in Google Scholar

[25] GUO, B.-N.-QI, F.: Some properties of the psi and polygamma functions, Hacet. J. Math. Stat. 39 (2010), 219-231.Suche in Google Scholar

[26] GUO, B.-N.-QI, F.: Two new proofs of the complete monotonicity of a function involving the psi function, Bull. Korean Math. Soc. 47 (2010), 103-111; http://dx.doi.org/10.4134/bkms.2010.47.1.103.10.4134/BKMS.2010.47.1.103Suche in Google Scholar

[27] GUO, B.-N.-QI, F.-SRIVASTAVA, H. M.: Some uniqueness results for the nontrivially complete monotonicity of a class of functions involving the polygamma and related functions, Integral Transforms Spec. Funct. 21 (2010), 849-858; http://dx.doi.org/10.1080/10652461003748112.10.1080/10652461003748112Suche in Google Scholar

[28] GUO, B.-N.-ZHANG, Y.-J.-QI, F.: Refinements and sharpenings of some double inequalities for bounding the gamma function, J. Inequal. Pure Appl. Math. 9 (2008), No. 1, Art. 17; http://www.emis.de/journals/JIPAM/article953.html.Suche in Google Scholar

[29] GUO, B.-N.-ZHAO, J.-L.-QI, F.: A completely monotonic function involving the triand tetra-gamma functions, Math. Slovaca 63 (2013), 469-478; http://dx.doi.org/10.2478/s12175-013-0109-2.10.2478/s12175-013-0109-2Suche in Google Scholar

[30] GUO, S.-QI, F.-SRIVASTAVA, H. M.: A class of logarithmically completely monotonic functions related to the gamma function with applications, Integral Transforms Spec. Funct. 23 (2012), 557-566; http://dx.doi.org/10.1080/10652469.2011.611331.10.1080/10652469.2011.611331Suche in Google Scholar

[31] GUO, S.-QI, F.-SRIVASTAVA, H. M.: Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic, Integral Transforms Spec. Funct. 18 (2007), 819-826; http://dx.doi.org/10.1080/10652460701528933.10.1080/10652460701528933Suche in Google Scholar

[32] GUO, S.-QI, F.-SRIVASTAVA, H. M.: Supplements to a class of logarithmically completely monotonic functions associated with the gamma function, Appl. Math. Comput. 197 (2008), 768-774; http://dx.doi.org/10.1016/j.amc.2007.08.011.10.1016/j.amc.2007.08.011Suche in Google Scholar

[33] GUO, S.-SRIVASTAVA, H. M.: A class of logarithmically completely monotonic functions, Appl. Math. Lett. 21 (2008), 1134-1141. 11710.1016/j.aml.2007.10.028Suche in Google Scholar

[34] HORN, R. A.: On infinitely divisible matrices, kernels and functions, Z. Wahrscheinlichkeitstheorie Verw. Geb. 8 (1967), 219-230.10.1007/BF00531524Suche in Google Scholar

[35] ISMAIL, M. E. H.-MULDOON, M. E.: Inequalities and monotonicity properties for gamma and q-gamma functions. In: Approximation and Computation: A Festschrift in Honour of Walter Gautschi (R. V. M. Zahar, ed.), Internat. Ser. Numer. Math. 119, Birkhauser, Basel, 1994, pp. 309-323.Suche in Google Scholar

[36] KAZARINOFF, D. K.: On Wallis’ formula, Edinburgh Math. Notes 40 (1956), 19-21.10.1017/S095018430000029XSuche in Google Scholar

[37] KOUMANDOS, S.: Remarks on some completely monotonic functions, J. Math. Anal. Appl. 324 (2006), 1458-1461.10.1016/j.jmaa.2005.12.017Suche in Google Scholar

[38] KOUMANDOS, S.-PEDERSEN, H. L.: Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function, J. Math. Anal. Appl. 355 (2009), 33-40.10.1016/j.jmaa.2009.01.042Suche in Google Scholar

[39] LÜ, Y.-P.-SUN, T.-C.-CHU, T.-C.: Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic, J. Inequal. Appl. 2011 (2011), Article 36; http://dx.doi.org/10.1186/1029-242X-2011-36.10.1186/1029-242X-2011-36Suche in Google Scholar

[40] MERKLE, M.: Logarithmic convexity and inequalities for the gamma function, J. Math. Anal. Appl. 203 (1996), 369-380.10.1006/jmaa.1996.0385Suche in Google Scholar

[41] MITRINOVIĆ, D. S.-PEˇCARIĆ, J. E.-FINK, A. M.: Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993.10.1007/978-94-017-1043-5_17Suche in Google Scholar

[42] MORTICI, C.: Very accurate estimates of the polygamma functions, Asymptot. Anal. 68 (2010), 125-134; http://dx.doi.org/10.3233/ASY-2010-0983.10.3233/ASY-2010-0983Suche in Google Scholar

[43] MULDOON, M. E.: Some monotonicity properties and characterizations of the gamma function, Aequationes Math. 18 (1978), 54-63.10.1007/BF01844067Suche in Google Scholar

[44] QI, F.: A completely monotonic function involving the divided difference of the psi function and an equivalent inequality involving sums, ANZIAM J. 48 (2007), 523-532; http://dx.doi.org/10.1017/S1446181100003199.10.1017/S1446181100003199Suche in Google Scholar

[45] QI, F.: Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058, 84 pp.; http://dx.doi.org/10.1155/2010/493058.10.1155/2010/493058Suche in Google Scholar

[46] FENG Qi-QIU-MING LUO: Bounds for the ratio of two gamma functions: from Wendel’s asymptotic relation to ElezoviĆ-Giordano-Pečari Ć’s theorem, J. Inequal. Appl. 2013 (2013), 542, 20 pages; http://dx.doi.org/10.1186/1029-242X-2013-542.10.1186/1029-242X-2013-542Suche in Google Scholar

[47] QI, F.: Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct. 18 (2007), 503-509; http://dx.doi.org/10.1080/10652460701358976.10.1080/10652460701358976Suche in Google Scholar

[48] QI, F.-CHEN, C.-P.: A complete monotonicity property of the gamma function, J.Math. Anal. Appl. 296 (2004), 603-607; http://dx.doi.org/10.1016/j.jmaa.2004.04.026.10.1016/j.jmaa.2004.04.026Suche in Google Scholar

[49] QI, F.-CUI, R.-Q.-CHEN, C.-P.-GUO, B.-N.: Some completely monotonic functions involving polygamma functions and an application, J. Math. Anal. Appl. 310 (2005), 303-308; http://dx.doi.org/10.1016/j.jmaa.2005.02.016.10.1016/j.jmaa.2005.02.016Suche in Google Scholar

[50] QI, F.-GUO, B.-N.: A logarithmically completely monotonic function involving the gamma function, Taiwanese J. Math. 14 (2010), 1623-1628.10.11650/twjm/1500405972Suche in Google Scholar

[51] QI, F.-GUO, B.-N.: An inequality involving the gamma and digamma functions, http://arxiv.org/abs/1101.4698.Suche in Google Scholar

[52] QI, F.-GUO, B.-N.: Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (2004), No. 1, Art. 8, 63-72; http://rgmia.org/v7n1.php.Suche in Google Scholar

[53] QI, F.-GUO, B.-N.: Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications, Commun. Pure Appl. Anal. 8 (2009), 1975-1989; <http://dx.doi.org/10.3934/cpaa.2009.8.1975>.Suche in Google Scholar

[54] QI, F.-GUO, B.-N.: Necessary and sufficient conditions for a function involving divided differences of the di- and tri-gamma functions to be completely monotonic, http://arxiv.org/abs/0903.3071.Suche in Google Scholar

[55] QI, F.-GUO, B.-N.: Necessary and sufficient conditions for functions involving the triand tetra-gamma functions to be completely monotonic, Adv. Appl. Math. 44 (2010), 71-83; http://dx.doi.org/10.1016/j.aam.2009.03.003.10.1016/j.aam.2009.03.003Suche in Google Scholar

[56] QI, F.-GUO, B.-N.: Sharp inequalities for polygamma functions, http://arxiv.org/abs/0903.1984.Suche in Google Scholar

[57] GUO, B.-N.-QI, F.: Sharp inequalities for the psi function and harmonic numbers, Analysis (Munich) 34 (2014), 201-208; http://dx.doi.org/10.1515/anly-2014-0001.10.1515/anly-2014-0001Suche in Google Scholar

[58] QI, F.-GUO, B.-N.: Some properties of extended remainder of Binet’s first formula for logarithm of gamma function, Math. Slovaca 60 (2010), 461-470; http://dx.doi.org/10.2478/s12175-010-0025-7.10.2478/s12175-010-0025-7Suche in Google Scholar

[59] QI, F.-GUO, B.-N.-CHEN, C.-P.: Some completely monotonic functions involving the gamma and polygamma functions, J. Aust. Math. Soc. 80 (2006), 81-88; http://dx.doi.org/10.1017/S1446788700011393.10.1017/S1446788700011393Suche in Google Scholar

[60] QI, F.-Guo, S.-GUO, B.-N.: Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math. 233 (2010), 2149-2160; http://dx.doi.org/10.1016/j.cam.2009.09.044.10.1016/j.cam.2009.09.044Suche in Google Scholar

[61] QI, F.-LUO, Q.-M.: Bounds for the ratio of two gamma functions-from Wendel’s and related inequalities to logarithmically completely monotonic functions, Banach J. Math. Anal. 6 (2012), 132-158.10.15352/bjma/1342210165Suche in Google Scholar

[62] QI, F.-WEI, C.-F.-GUO, B.-N.: Complete monotonicity of a function involving the ratio of gamma functions and applications, Banach J. Math. Anal. 6 (2012), 35-44.10.15352/bjma/1337014663Suche in Google Scholar

[63] SONG, Y.-Q.-CHU, Y.-M.-WU, L.-L.: An elementary double inequality for gamma function, Int. J. Pure Appl. Math. 38 (2007), 549-554.Suche in Google Scholar

[64] WU, L.-L.-CHU, Y.-M.: An inequality for the psi functions, Appl. Math. Sci. (Ruse) 2 (2008), 545-550.Suche in Google Scholar

[65] WU, L.-L.-CHU, Y.-M.-TANG, X.-M.: Inequalities for the generalized logarithmic mean and psi functions, Int. J. Pure Appl. Math. 48 (2008), 117-122.Suche in Google Scholar

[66] ZHANG, X.-M.-CHU, Y.-M.: A double inequality for gamma function, J. Inequal. Appl. 2009 (2009), Article ID 503782, 7 pp.; http://dx.doi.org/10.1155/2009/503782.10.1155/2009/503782Suche in Google Scholar

[67] ZHANG, X.-M.-CHU, Y.-M.: A double inequality for the gamma and psi functions, Int. J. Mod. Math. 3 (2008), 67-73.Suche in Google Scholar

[68] ZHAO, T.-H.-CHU, Y.-M.: A class of logarithmically completely monotonic functions associated with a gamma function, J. Inequal. Appl. 2010 (2010), Article ID 392431, 11 pp.; http://dx.doi.org/10.1155/2010/392431.10.1155/2010/392431Suche in Google Scholar

[69] ZHAO, T.-H.-CHU, Y.-M.-JIANG, Y.-P.: Monotonic and logarithmically convex properties of a function involving gamma functions, J. Inequal. Appl. 2009 (2009), Article ID 728612, 13 pp.; http://dx.doi.org/10.1155/2009/728612.10.1155/2009/728612Suche in Google Scholar

[70] ZHAO, T.-H.-CHU, Y.-M.-WANG, H.: Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal. 2011 (2011), Article ID 896483, 13 pp.; http://dx.doi.org/10.1155/2011/896483.10.1155/2011/896483Suche in Google Scholar

[71] ZHAO, J.-L.-GUO, B.-N.-QI, F.: A refinement of a double inequality for the gamma function, Publ. Math. Debrecen 80 (2012), 333-342; http://dx.doi.org/10.5486/PMD.2012.5010.10.5486/PMD.2012.5010Suche in Google Scholar

[72] ZHAO, J.-L.-GUO, B.-N.-QI, F.: Complete monotonicity of two functions involving the tri- and tetra-gamma functions, Period. Math. Hungar. 65 (2012), 147-155; <http://dx.doi.org/10.1007/s10998-012-9562-x>.Suche in Google Scholar

[73] WIDDER, D. V.: The Laplace Transform, Princeton University Press, Princeton, NJ, 1946. Suche in Google Scholar

Received: 2011-11-21
Accepted: 2012-8-4
Published Online: 2015-3-25
Published in Print: 2015-2-1

© 2015 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0010/pdf?lang=de
Button zum nach oben scrollen