Startseite Mathematik Multiple Solutions of Nonlinear Fractional Differential Equations with p-Laplacian Operator and Nonlinear Boundary Conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multiple Solutions of Nonlinear Fractional Differential Equations with p-Laplacian Operator and Nonlinear Boundary Conditions

  • Yiliang Liu EMAIL logo und Liang Lu
Veröffentlicht/Copyright: 25. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we deal with multiple solutions of fractional differential equations with p-Laplacian operator and nonlinear boundary conditions. By applying the Amann theorem and the method of upper and lower solutions, we obtain some new results on the multiple solutions. An example is given to illustrate our results.

References

[1] AMANN, H.: Fixed point equation and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709.10.1137/1018114Suche in Google Scholar

[2] CHEN, T.-LIU, W.-HU, Z. G.: A boundary value problem for fractional differential equation with p-Laplacian operator at resonance, Nonlinear Anal. 75 (2012), 3210-3217.10.1016/j.na.2011.12.020Suche in Google Scholar

[3] CHEN, T.-LIU, W.: An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator, Appl. Math. Lett. 25 (2012), 1671-1675.10.1016/j.aml.2012.01.035Suche in Google Scholar

[4] CHAI, G. Q.: Positive solutions for boundary value problem for fractional differential equation with p-Laplacian operator, Bound. Value Probl. (2012), 2012:18, doi: 10.1186/1687-2770-2012-18.10.1186/1687-2770-2012-18Suche in Google Scholar

[5] KILBSA, A. A.-SRIVASTAVA, H. M.-TRUJILLO, J. J.: Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.Suche in Google Scholar

[6] LIANG, J. T.-LIU, Y. L.-LIU, Z. H.: A class of BVPS for first order impulsive integrodifferential equations, Appl. Math. Comput. 218 (2011), 3667-3672.10.1016/j.amc.2011.09.009Suche in Google Scholar

[7] LIU, X. P.-JIA, M.-XIANG, X.: On the solvability of a fractional differential equation model involving the p-Laplacian operator, Comput. Math. Appl. (2012), doi: 10.1016/j.camwa. 2012.03.001.Suche in Google Scholar

[8] LIU, X. P.-JIA,M.: Multiple solutions for fractional differential equations with nonlinear boundary conditions, Comput. Math. Appl. 59 (2010), 2880-2886.10.1016/j.camwa.2010.02.005Suche in Google Scholar

[9] LIU, Z. H.-LIANG, J. T.: Multiple solutions of nonlinear boundary value problems for fractional differential equations, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 239-248.Suche in Google Scholar

[10] LIU, Z. H.-LU, L.: A class of BVPs for nonlinear fractional differential equations with p-Laplacian operator, Electron. J. Qual. Theory Differ. Equ. 70 (2012), 1-16.Suche in Google Scholar

[11] LIU, Z. H.-SUN, J. H.: Nonlinear boundary value problems of fractional differential systems, Comput. Math. Appl. 64 (2012), 463-475.10.1016/j.camwa.2011.12.020Suche in Google Scholar

[12] PODLUBNY, I.: Factional Differential Equations, Academic Press, San Diego, 1999.Suche in Google Scholar

[13] SUN, J. H.-LIU, Y. L.-LIU, G. F.: Existence of solutions for fractional differential systems with antiperiodic boundary conditions, Comput. Math. Appl. 64 (2012), 1557-1566.10.1016/j.camwa.2011.12.083Suche in Google Scholar

[14] WANG, J. H.-XIANG, H. J.: Upper and lower solutions method for a class of singular fractional boundary value problems with p-Laplacian operator, Abstr. Appl. Anal. (2010), 12 Art. ID 971824.Suche in Google Scholar

[15] WANG, J. H.-XIANG, H. J.-LIU, Z. G.: Existence of concave positive solutions for boundary value problem of nonlinear fractional differential equation with p-Laplacian operator, Int. J. Math. Math. Sci. (2010), 17 Art. ID 495138.Suche in Google Scholar

[16] WANG, J. H.-XIANG, H. J.-LIU, Z. G.: Positive solutions for three-point boundary value problems of nonlinear fractional differential equations with p-Laplacian, Far East J. Appl. Math. 37 (2009), 33-47.Suche in Google Scholar

[17] WANG, J.R.-FEˇCKAN, M.-ZHOU, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ. 8 (2011), 345-361.10.4310/DPDE.2011.v8.n4.a3Suche in Google Scholar

[18] WANG, J. R-FEˇCKAN, M.-ZHOU, Y.: Ulam’s type stability of impulsive ordinary differential equations, J. Math. Anal. Appl. 395 (2012), 258-264.10.1016/j.jmaa.2012.05.040Suche in Google Scholar

[19] WANG, J. R.-LI, X. Z.-WEI, W.: On the natural solution for an impulsive fractional differential equations of order q ∈ (1, 2), Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4384-4394.10.1016/j.cnsns.2012.03.011Suche in Google Scholar

[20] WANG, J. R.-LV, L. L.-ZHOU, Y.: New concepts and results in stability of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 2530-2538.10.1016/j.cnsns.2011.09.030Suche in Google Scholar

[21] WANG, J. R.-ZHOU, Y.-WEI, W.: Fractional Schr¨odinger equations with potential and optimal controls, Nonlinear Anal. Real World Appl. 13 (2012), 2755-2766.10.1016/j.nonrwa.2012.04.004Suche in Google Scholar

[22] WANG, J. R.-ZHOU, Y.-FEˇCKAN, M.: On recent developments in the theory of boundary value problems for impulsive fractional differential equations, Comput. Math. Appl. (2012), doi:10.1016/j.camwa.2011.12.064.10.1016/j.camwa.2011.12.064Suche in Google Scholar

[23] ZHOU, Y.-JIAO, F.-LI, J.: Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal. 71 (2009), 3249-3256.10.1016/j.na.2009.01.202Suche in Google Scholar

[24] ZHOU, Y.-JIAO, F.: Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal. Real World Appl. 11 (2010), 4465-4475. 10.1016/j.nonrwa.2010.05.029Suche in Google Scholar

Received: 2012-7-21
Accepted: 2012-8-26
Published Online: 2015-3-25
Published in Print: 2015-2-1

© 2015 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0008/pdf
Button zum nach oben scrollen