Startseite M-polynomial and NM-polynomial indices of camptothecin–polymer conjugate IT-101 structure
Artikel Open Access

M-polynomial and NM-polynomial indices of camptothecin–polymer conjugate IT-101 structure

  • Ling Teng , Lei Zhang , Muhammad Mohsin Abbas EMAIL logo , Muhammad Naeem , Fairouz Tchier und Yong Wang
Veröffentlicht/Copyright: 25. März 2025

Abstract

Camptothecin is a naturally occurring alkaloid known for its significant and selective inhibition of the topoisomerase nuclear enzyme, a critical target in cancer treatment. IT-101, a polymeric drug conjugate of camptothecin, exhibits potent antiglioma activity in vitro, making it a highly promising candidate for cancer therapy. This conjugate not only slows the progression of various malignancies but also enhances the therapeutic efficacy of camptothecin. Topological indices, which are numerical values associated with the molecular structure of chemical compounds, serve as powerful tools for predicting physical properties and biological activities. Calculating these indices offers an efficient alternative to time-consuming and costly laboratory experiments. In this article, we first computed the M-polynomial and NM-polynomial of the camptothecin–polymer conjugate IT-101 structure. By applying various integration and differentiation formulas, we have computed different degree-based topological indices (TIs) for the camptothecin–polymer conjugate IT-101 structure. From an application perspective, we employed a linear regression model to estimate the physicochemical properties of 29 anticancer drugs using eccentricity-based TIs. The results demonstrate that two properties, namely, molecular weight and complexity, can be predicted with high accuracy using the first Zagreb eccentric index. The results may be useful to obtain insights into its molecular characteristics and potential applications in cancer treatment.

1 Introduction

Graph theory is utilized in a wide variety of scientific and engineering disciplines such as biology, chemistry, computer science, and mathematics [1,2]. In the study of mathematical chemistry, chemical graph theory has developed into a significant topic, as pioneered by Trinajstic [3,4,5], Graovac et al. [6], Gutman and Trinajstic [3], Randic [7], and Balaban [8]. For instance, one may conduct a mathematical study of a chemical network and attempt to improve techniques for computing indices, which have many applications in quantitative structure–activity relationship (QSAR) and quantitative structure–property relationship (QSPR). Chemical characteristics of graph theory are also helpful in stereochemistry and quantum chemistry [9,10]. Topological indices convert data contained in a chemical molecule into useful numbers. These indices are advantageous in the study of QSAR and QSPR.

In the literature, several articles exist where authors have developed quantitative structure–property relationship (QSPR) models linking physical properties to topological indices (TIs). Fatemeh Shafiei, for example, developed QSPR models for the thermodynamic properties of monocarboxylic acids based on three indices using linear regression [11]. Shirakol et al. proposed relationships between seven distance-based indices and eight physical properties of alkanes through linear regression [12]. Ahmad et al. studied the physical properties of anthracene and phenylene, identifying suitable quadratic curves for the Estrada and energy indices and demonstrating the inequality relation between exact and estimated values [13]. Khalid et al. determined vertex degree-based indices for two families of graphs, analyzing how the topology of a graph changes completely when an edge is added, otherwise remaining the same [14]. For further information about the relationship between physical properties, refer to the previous studies [15,16].

A topological descriptor/index is a graph invariant derived from a network that describes the structure and chemical characteristics of a molecule. Chemical graph theory, based on this concept, focuses on how the structural characteristics of certain molecules determine their behavior, aiding in understanding the mechanisms of chemical processes. Various properties such as melting point, vaporization temperatures, boiling point, and molar volume are investigated using TIs [17]. Moreover, these indices can characterize lipophilicity, toxicity, cell growth stimulation, nutritive behavior, and pH control, making them useful for identifying both physical characteristics and biological activities [18,19,20].

The M-polynomial represents a relatively new form of polynomial that promises to unveil novel chemical characteristics and provide fresh insights into the study of degree-based descriptors. Its main advantage lies in its ability to accurately generate degree-based indices [20,21]. This innovative polynomial is rapidly advancing. Recently, Kwun et al. calculated the M-polynomial indices for V-phenylene nanotubes and nanotori [22].

Let G be a connected graph, with E and V denoting its edge set and vertex set, respectively. For a vertex u V , let N ( u ) = { v V | u v E } denote the set containing all the neighbors of u . The degree of a vertex u , denoted as d u , is the number of elements in N ( u ) . The neighborhood degree of a vertex v is the sum of the degree of neighbors of v and is denoted by v . The eccentricity ec ( u ) of a vertex u V is the maximum distance of u and any vertex in G . We suggest that readers refer to West’s work on basic principles of graph theory [23].

The M-polynomial of a graph G is represented as follows [20]:

M ( G ) = i j N ( i , j ) x i y j

where N ( i , j ) is the number of edges having end vertices degree i and j and x and y are the variables.

The Wiener index [24] was the first topological introduced by Weiner, which is defined as follows:

W ( G ) = 1 2 u , v V ( P ) d ( u , v )

He used this index to estimate the boiling point of paraffin. We propose the interested readers to consult [25,26] for a comprehensive discussion of the Wiener index. The first and second Zagreb indices are defined as follows [3]:

M 1 ( G ) = u v E ( P ) ( d u + d v )

M 2 ( G ) = u v E ( P ) ( d u × d v )

More details on Zagreb indices can be found in the previous studies [2729].

Nikolic et al. [4] proposed a new form of the second Zagreb index, which is called the modified second Zagreb index. It is denoted by M 2 m and is defined as follows:

M 2 m ( G ) = u v E ( G ) 1 d v d u

In 2011, Fath-Tabar [30] proposed the third Zagreb index, indicated by M 3 , which is defined as follows:

M 3 ( G ) = u v E ( G ) d v d u

The symmetric division index [6] is a topological index that is calculated as follows:

SDD ( G ) = u v E ( G ) max ( d v , d u ) min ( d v , d u ) + min ( d v , d u ) max ( d v , d u )

In 2010, Furtula et al. [6] developed the augmented Zagreb index, which is defined as follows:

AZ ( G ) = u v E ( G ) d v d u d v + d u 2 3

Zhou and Trinajstić designed the sum-connectivity index ( S ) [31] as follows:

S ( G ) = u v E ( G ) 1 d v + d u

The graph invariant known as the inverse sum index has been examined as a key descriptor of surface area for isomers of octane. It is calculated as follows:

I ( G ) = u v E ( G ) d v d u d v + d u

In 2003, Caporossi et al. [32] established some fascinating and crucial mathematical characteristics. The Harmonic index [33] is defined as follows:

H ( G ) = u v E ( G ) 2 d v + d u

Munir et al. [21] proposed the M-polynomial idea in 2015. The role of M-polynomial is the same for degree-based indices as the Hosoya polynomial does for distance-based indices. For more information on the computation of M-Polynomials of various graphs, see the previous studies [6,22,3436]. Let M ( G ; x , y ) = p ( x , y ) , and

D x = x p ( x , y ) x

D y = y p ( x , y ) y

I x = 0 x p ( t , y ) t d t

I y = 0 y p ( x , t ) t d t

J ( p ( x , y ) ) = p ( x , x )

Q α ( p ( x , y ) ) = x α p ( x , y )

One way to compute the degree-based TIs is by using M-polynomial. The mathematical formulas of the TIs in terms of M-polynomial are presented in Table 1. Recently, some new degree-based TIs were defined by different authors depending on the neighborhood degree. These neighborhood degree-based indices can be computed by using NM-polynomial. The mathematical formulas of neighborhood-based TIs in the form of NM-polynomila are given in Table 2.

Table 1

The formula of the degree-based indices in the form of M-polynomial

Topological index TP Degree based Derivation
Second Zagreb M 2 u v E d u d v ( D x D y ) ( M ( G ) ) x , y = 1
Second modified Zagreb M 2 m u v E 1 d u d v ( I x I y ) ( M ( G ) ) x , y = 1
First Zagreb M 1 u v E d u + d v ( D x + D y ) ( M ( G ) ) x , y = 1
Augmented Zagreb AZ u v E d u d v d u + d v 2 3 I x 3 Q 2 J D x 3 D y 3 ( M ( G ) ) x = 1
General Randic R α u v E d u α d v α D x α D y α ( M ( G ) ) x , y = 1
Harmonic H u v E 2 d u + d v 2 I x J ( M ( G ) ) x = 1
Inverse-sum I u v E d u d v d u + d v I x J D x D y ( M ( G ) ) x = 1
Forgotten F u v E d u 2 + d v 2 ( D x 2 + D y 2 ) ( M ( G ) ) x , y = 1
Symmetric division SDD u v E d u 2 + d v 2 d u d v ( D x I y + I x D y ) ( M ( G ) ) x , y = 1
Redefined third Zagreb RZ 3 u v E d u d v ( d u + d u ) D x D y ( D x + D y ) M ( G ) x , y = 1
Table 2

The formula of the neighborhood degree-based indices in the form of NM-polynomial

Topological index TP Nd degree sum Derivation
Third version of Zagreb M 1 u v E u + v ( D x + D y ) ( NM ( G ) ) x , y =1
Neighborhood Harmonic NH u v E 2 u + v 2 I x J ( NM ( G ) ) x = 1
Neighborhood inverse sum NI u v E u v u + v I x J D x D y ( N M ( G ) ) x = 1
Neighborhood second Zagreb M 2 u v E u v ( D x D y ) ( NM ( G ) ) x , y =1
Third neighborhood ND 3 u v E u v ( u + u ) D x D y ( D x + D y ) ( NM ( G ) ) x , y =1
Modified neighborhood second
Zagreb M 2 n m u v E 1 u v ( I x I y ) ( NM ( G ) ) x , y =1
Sanskruti S u v E u v u + v 2 3 I x 3 Q 2 J D x 3 D y 3 ( NM ( G ) ) x =1
Neighborhood general Randic NR α u v E u α v α D x α D y α ( NM ( G ) ) x , y =1
Fifth neighborhood ND 5 u v E u 2 + v 2 u v ( D x I y + I x D y ) ( NM ( G ) ) x , y =1
Neighborhood forgotten F N u v E u 2 + v 2 ( D x 2 + D y 2 ) ( NM ( G ) ) x , y =1

2 Topological indices computation of camptothecin–polymer conjugate (IT-101)

A polymer–drug conjugate encompasses a wide range of components, from approved medicines to experimental substances like pegylated proteins. While all polymer–drug conjugates are now referred to as nanoscaled, only a select few qualify as “truly nanoparticles” [37]. Recent reviews on nanoparticle treatments in medicine have addressed this distinction [37]. One such example is IT-101, a camptothecin–polymer conjugate based on cyclodextrin [38], utilized as a cancer medication. Camptothecin, an alkaloid derived from a Chinese tree, profoundly affects the topoisomerase (I) nuclear enzyme, thereby impeding the development of several malignancies. Despite its efficacy, the systemic administration of camptothecin presents challenges due to its inherent toxicity. Nevertheless, its strong antiglioma activity in vitro makes it a promising candidate for polymer conjugation.

In the control model, patients receiving camptothecin polymers exhibited a median survival ranging from 19 to 120 days [39]. Interestingly, the initial peritumoral dosage of our medicine showed no significant effect on survival compared to the control group. When camptothecin was added to 50% polymers to detect 9L gliosarcoma in rats, a 69-day cure rate was observed, indicating efficacy and immunity in camptothecin-treated animals. Furthermore, under similar conditions, administering a high dose of cerebral camptothecin led to a substantial increase in longevity and a significant improvement in continuity [39].

In the next theorem, we compute the M-polynomial for the molecular structure of camptothecin–polymer conjugate IT-101. The molecular structure of camptothecin–polymer conjugate IT-101 is depicted in Figure 1.

Figure 1 
               Structure of camptothecin–polymer conjugate (IT-101).
Figure 1

Structure of camptothecin–polymer conjugate (IT-101).

Theorem 1

Let G be a molecular graph of camptothecin–polymer conjugate IT-101. Then, the M-polynomial of G is expressed as follows:

M ( G ; x , y ) = ( 4 x y 4 + x 2 y 4 + x 4 y 4 ) m n + ( 19 x y 2 + 25 x y 3 + 85 x y 4 + 8 x 2 y 3 + 60 x 2 y 4 + 35 x 3 y 3 + 20 x 3 y 4 + 43 x 4 y 4 ) m + x y 3 + 6 x y 4 + 2 x 3 y 4

Proof 1

Let G be a molecular graph of camptothecin–polymer conjugate IT-101 structure. The graph G has | V ( G ) | = 7 m n + 267 m + 10 vertices and | E ( G ) | = 6 m n + 295 m + 9 edges. To compute the M-polynomial of G , we need to find the edge partition of G based on the degree of end vertices of each edge. Let N ( i , j ) = { u v E ( G ) | d u = i , d v = j } . From the graph of G , it is easy to observe that the edge set of G can be partitioned in to eight sets. The edge partition is as follows: | N (1,2) | = 19 m , N ( 1 , 3 ) = 25 m + 1 , N ( 1 , 4 ) = 4 m n + 85 m + 6 , N (2,3) = 8 m , N ( 2 , 4 ) = m n + 60 m , N ( 3 , 3 ) = 35 m , N ( 3 , 4 ) = 20 m + 2 , and N ( 4 , 4 ) = m n + 43 m .□

Now, according to the definition of M-polynomial, we have

M ( G ) = i j N ( i , j ) x i y j = N ( 1 , 2 ) x 1 y 2 + N ( 1 , 3 ) x 1 y 3 + N ( 1 , 4 ) x 1 y 4 + N ( 2 , 3 ) x 2 y 3 + N ( 2 , 4 ) x 2 y 4 + N ( 3 , 3 ) x 3 y 3 + N ( 3 , 4 ) x 3 y 4 + N ( 4 , 4 ) x 4 y 4

Now, by using the values from the edge partition, we obtain

M ( G ) = 19 m x y 2 + ( 25 m + 1 ) x y 3 + ( 4 m n + 85 m + 6 ) x y 4 + 8 m x 2 y 3 + ( m n + 60 m ) x 2 y 4 + 35 m x 3 y 3 + ( 20 m + 2 ) x 3 y 4 + ( m n + 43 m ) x 4 y 4 = ( 4 x y 4 + x 2 y 4 + x 4 y 4 ) m n + ( 19 x y 2 + 25 x y 3 + 85 x y 4 + 8 x 2 y 3 + 35 x 3 y 3 + 60 x 2 y 4 + 20 x 3 y 4 + 43 x 4 y 4 ) m + x y 3 + 6 x y 4 + 2 x 3 y 4

Theorem 2

Let G be a molecular graph camptothecin polymer conjugate IT-101, then

M 1 ( G ) = 34 m n + 1676 m + 48

M 2 ( G ) = 40 m n + 2,224 m + 51

F ( G ) = 120 m n + 5 , 600 m + 162

RZ 3 ( G ) = 256 m n + 14 , 298 m + 300

R α ( G ) = ( 4 × 4 α + 2 3 α + 4 2 α ) m n + ( 19 × 2 α + 25 × 3 α + 85 × 4 α + 8 × 6 α + 60 × 2 3 α + 35 × 3 2 α + 20 × 12 α + 43 × 4 2 α ) m + 3 α + 6 × 4 α + 2 × 12 α

M 2 m ( G ) = 19 16 m n + 8 , 087 144 m + 2

SDD ( G ) = 43 2 m n + 10 , 285 m + 33

H ( G ) = 131 60 m n + 42 , 909 420 m + 243 60

I ( G ) = 98 15 m n + 151 , 957 420 m + 1 , 257 140

AZ ( G ) = 11 , 704 27 m n + 7 , 592 , 921 , 805 216 , 000 m + 1 , 221 , 621 27 , 000

Proof 2

The formula of the M-polynomial of G is expressed as follows:

p ( x , y ) = ( 4 x y 4 + x 2 y 4 + x 4 y 4 ) m n + ( 19 x y 4 + 25 x y 3 + 85 x y 4 + 8 x 2 y 3 + 35 x 3 y 3 + 60 x 2 y 4 + 20 x 3 y 4 + 43 x 4 y 4 ) m + x y 3 + 6 x y 4 + 2 x 3 y 4

Then the degree-based TIs can be calculated as follows:

( D x + D y ) p ( x , y ) = ( 20 x y 4 + 6 x 2 y 4 + 8 x 4 y 4 ) m n + ( 57 x y 2 + 100 x y 3 + 425 x y 4 + 40 x 2 y 3 + 360 x 2 y 4 + 210 x 3 y 3 + 140 x 3 y 4 + 344 x 4 y 4 ) m + 4 x y 3 + 30 x y 4 + 14 x 3 y 4 M 1 ( G ) = 34 m n + 1676 m + 48

D x D y ( p ( x , y ) ) = ( 16 x y 4 + 8 x 2 y 4 + 16 x 4 y 4 ) m n + ( 38 x y 2 + 75 x y 3 + 340 x y 4 + 48 x 2 y 3 + 480 x 2 y 4 + 315 x 3 y 3 + 240 x 3 y 4 + 688 x 4 y 4 ) m + 3 x y 3 + 24 x y 4 + 24 x 3 y 4 M 2 ( G ) = 40 m n + 2224 m + 51

( D x 2 + D y 2 ) p ( x , y ) = ( 68 x y 4 + 20 x 2 y 4 + 32 x 4 y 4 ) m n + ( 95 x y 2 + 250 x y 3 + 1,445 x y 4 + 104 x 2 y 3 + 1 , 200 x 2 y 4 + 630 x 3 y 3 + 500 x 3 y 4 + 1,376 x 4 y 4 ) m + 10 x y 3 + 102 x 2 y 4 + 50 x 3 y 4 F ( G ) = 120 m n + 5 , 600 m + 162

D x D y ( D x + D y ) p ( x , y ) = ( 80 x y 4 + 48 x 2 y 4 + 128 x 4 y 4 ) m n + ( 104 x y 2 + 300 x y 3 + 1 , 700 x y 4 + 240 x 2 y 3 + 2,880 x 2 y 4 + 1,890 x 3 y 3 + 1 , 680 x 3 y 4 + 5,504 x 4 y 4 ) m + 12 x y 3 + 120 x y 4 + 168 x 3 y 4 RZ 3 ( G ) = 256 m n + 14 , 298 m + 300

D x α D y α ( p ( x , y ) ) = ( 4 × 4 α x y 4 + 2 3 α x 2 y 4 + 4 2 α x 4 y 4 ) m n + ( 19 × 2 α x y 2 + 25 × 3 α x y 3 + 85 × 4 α x y 4 + 8 × 6 α x 2 y 3 + 60 × 8 α x 2 y 4 + 35 × 9 α x 3 y 3 + 20 × 12 α x 3 y 4 + 43 × 16 α x 4 y 4 ) m + 3 α x y 3 + 6 × 4 α x y 4 + 2 × 12 α x 3 y 4 R α ( G ) = ( 4 × 4 α + 2 3 α + 4 2 α ) m n + ( 19 × 2 α + 25 × 3 α + 85 × 4 α + 8 × 6 α + 60 × 8 α + 35 × 9 α + 20 × 12 α + 43 × 16 α ) m + 3 α + 6 × 4 α + 2 × 12 α

I x I y ( p ( x , y ) ) = x y 4 + 1 8 x 2 y 4 + 1 16 x 4 y 4 m n + 19 2 x y 2 + 25 3 x y 3 + 85 4 x y 4 + 4 3 x 2 y 3 + 15 2 x 2 y 4 + 35 9 x 3 y 3 + 5 3 x 3 y 4 + 43 16 x 4 y 4 m + 1 3 x y 3 + 3 2 x y 4 + 1 6 x 3 y 4 M 2 m ( G ) = 19 16 m n + 8 , 087 144 m + 2

( D x I y + I x D y ) p ( x , y ) = 17 x y 4 + 5 2 x 2 y 4 + 2 x 4 y 4 m n + 95 2 x y 2 + 250 3 x y 3 + 1,445 4 x y 4 + 52 3 x 2 y 3 + 150 x 2 y 4 + 70 x 3 y 3 + 125 3 x 3 y 4 + 86 x 4 y 4 m + 10 3 x y 3 + 51 2 x y 4 + 25 6 x 3 y 4 SDD ( G ) = 43 2 m n + 10 , 285 m + 33 2 I x J ( p ( x , y ) ) = 8 5 x 5 + 1 3 x 6 + 1 4 x 8 m n + 38 3 x 3 + 25 2 x 4 + 34 x 5 + 16 5 x 5 + 20 x 6 + 35 3 x 6 + 40 7 x 7 + 43 4 x 8 m + 1 2 x 4 + 12 5 x 5 + 4 7 x 7 H ( G ) = 131 60 m n + 42 , 909 420 m + 243 60

I x J D x D y ( p ( x , y ) ) = 16 5 x 5 + 4 3 x 6 + 2 x 8 m n + 38 3 x 3 + 75 4 x 4 + 48 5 x 5 + 315 6 x 6 + 240 7 x 7 + 68 x 5 + 80 x 6 + 86 x 8 m + 3 4 x 4 + 24 5 x 5 + 24 7 x 7 I ( G ) = 98 15 m n + 151 , 957 420 + 1 , 257 140

I x 3 Q 2 J D x 3 D y 3 ( p ( x , y ) ) = 10 , 976 27 x 5 + 512 27 x 8 + 8 x 6 m n + 32 , 832 x 3 + 675 8 x 4 + 5 , 440 27 x 5 + 64 x 5 + 480 x 6 + 25 , 515 64 x 6 + 34 , 560 125 x 7 + 176 , 128 216 x 8 m + 27 8 x 4 + 128 9 x 5 + 3 , 456 125 x 7

AZ ( G ) = 11 , 704 27 m n + 7 , 592 , 921 , 805 216 , 000 m + 1 , 221 , 621 27 , 000

We have plotted the 3D graph of each of the computed topological index. These plots are depicted in Figures 26. The 3D plots help to understand the behavior of these TIs. We have also computed the numerical values of these TIs for different values of m and n . These values are presented in Tables 3 and 4. It is easy to observe that the value of each topological index increases with the increase in the value of m and n .

Figure 2 
               3D plot of (a) 
                     
                        
                        
                           
                              
                                 M
                              
                              
                                 1
                              
                           
                           (
                           G
                           )
                        
                        {M}_{1}(G)
                     
                   and (b) 
                     
                        
                        
                           
                              
                                 M
                              
                              
                                 2
                              
                           
                           (
                           G
                           )
                        
                        {M}_{2}(G)
                     
                  .
Figure 2

3D plot of (a) M 1 ( G ) and (b) M 2 ( G ) .

Figure 3 
               3D plot of (a) 
                     
                        
                        
                           F
                           (
                           G
                           )
                        
                        F(G)
                     
                   and (b) 
                     
                        
                        
                           
                              
                                 RZ
                              
                              
                                 3
                              
                           
                           (
                           G
                           )
                        
                        {\text{RZ}}_{\text{3}}(G)
                     
                  .
Figure 3

3D plot of (a) F ( G ) and (b) RZ 3 ( G ) .

Figure 4 
               3D plot of (a) 
                     
                        
                        
                           
                              
                                 R
                              
                              
                                 α
                              
                           
                           (
                           G
                           )
                        
                        {R}_{\alpha }(G)
                     
                   and (b) 
                     
                        
                        
                           
                              M
                              2
                              
                              
                              
                              m
                           
                           (
                           G
                           )
                        
                        {}^{m}M_{2}(G)
                     
                  .
Figure 4

3D plot of (a) R α ( G ) and (b) M 2 m ( G ) .

Figure 5 
               3D plot of (a) 
                     
                        
                        
                           SDD(
                           G
                           )
                        
                        \text{SDD(}G\text{)}
                     
                   and (b) 
                     
                        
                        
                           H
                           (
                           G
                           )
                        
                        H(G)
                     
                  .
Figure 5

3D plot of (a) SDD( G ) and (b) H ( G ) .

Figure 6 
               3D plot of (a) 
                     
                        
                        
                           I
                           (
                           G
                           )
                        
                        I(G)
                     
                   and (b) 
                     
                        
                        
                           AZ(
                           G
                           )
                        
                        \text{AZ(}G\text{)}
                     
                  .
Figure 6

3D plot of (a) I ( G ) and (b) AZ( G ) .

Table 3

Numerical values of degree-based TIs for different values of m and n

[m, n] M 1(G) M 2(G) F(G) RZ 3(G) R a (G)
[1,1] 1,758 2,315 5,882 14,854 2,315
[2,2] 3,536 4,659 11,842 29,920 35,449
[3,3] 5,382 7,083 18,042 45,498 674,817
[4,4] 7,296 9,587 24,482 61,588 13,370,349
[5,5] 9,278 12,171 31,162 78,190 262,249,257
[6,6] 11,328 14,835 38,082 95,304 5,043,315,389
[7,7] 13,446 17,579 45,242 112,930 95,143,703,849
[8,8] 15,632 20,403 52,642 131,068 1,765,429,617,469
[9,9] 17,886 23,307 60,282 149,718 32,306,904,629,769
[10,10] 20,208 26,291 68,162 168,880 584,398,181,015,037
Table 4

Numerical values of degree-based TIs for different values of m and n .

[m, n] m M 2(G) SDD(G) H(G) I(G) AZ(G)
[1,1] 59.347 10,339.5 108.39762 377.31429 35,631.14247
[2,2] 119.07 20,689.0 217.11190 758.71667 72,084.00268
[3,3] 181.17 31,081.5 330.19286 1,153.18571 109,403.82585
[4,4] 245.64 41,517.0 447.64048 1,560.72143 147,590.61198
[5,5] 312.49 51,995.5 569.45476 1,981.32381 186,644.36108
[6,6] 381.71 62,517.0 695.63571 2,414.99286 226,565.07314
[7,7] 453.31 73,081.5 826.18333 2,861.72857 267,352.74816
[8,8] 527.28 83,689.0 961.09762 3,321.53095 309,007.38615
[9,9] 603.63 94,339.5 1,100.37857 3,794.40000 351,528.98709
[10,10] 682.35 105,033.0 1,244.02619 4,280.33571 394,917.55101

In the next theorem, we give an explicit expression for the NM-polynomial of camptothecin–polymer conjugate IT-101.

Theorem 3

Let G be a molecular graph of camptothecin-polymer conjugate IT-101 structure. Then, the NM-polynomial of G is expressed as follows:

NM ( G ; x , y ) = ( 4 x 4 y 8 + 2 x 8 y 8 ) m n + ( 19 x 2 y 5 + 18 x 3 y 7 + 6 x 3 y 8 + x 3 y 9 + 10 x 4 y 7 + 30 x 4 y 8 + 11 x 4 y 9 + 4 x 4 y 10 + 30 x 4 y 11 + 4 x 6 y 8 + 14 x 7 y 7 + 5 x 5 y 8 + 14 x 5 y 11 + 4 x 7 y 12 + 12 x 8 y 8 + 21 x 8 y 9 + 26 x 8 y 11 + 4 x 7 y 8 + 6 x 7 y 9 + 10 x 7 y 10 + 2 x 8 y 10 + 2 x 9 y 10 + 2 x 10 y 10 + 4 x 10 y 8 + x 9 y 6 + 8 x 9 y 11 + 2 x 10 y 7 + 4 x 10 y 12 + 21 x 11 y 11 ) m + x 3 y 9 + 6 x 4 y 6 + x 9 y 6 + x 9 y 9

Proof 3

Let G be a molecular graph of camptothecin polymer conjugate IT-101 structure. The graph G has V ( G ) = 7 m n + 267 m + 10 vertices and E ( G ) = 6 m n + 295 m + 9 edges. To compute the M-polynomial of G , we need to find the edge partition of G based on the neighborhood degree of end vertices of each edge. Let N ( i , j ) = { u v E ( G ) | u = i , v = j } . From the graph of G , it is easy to observe that the edge set of G can be partitioned into 29 sets. The edge partition is as follows: N ( 2 , 5 ) = 19 m , N ( 3 , 7 ) = 18 m , N ( 3 , 8 ) = 6 m , N ( 3 , 9 ) = m + 1 , N ( 4 , 6 ) = 6 , N ( 4 , 7 ) = 10 m , N ( 4 , 8 ) = 4 m n + 30 m , N ( 4 , 9 ) = 11 m , N ( 4 , 10 ) = 4 m , N ( 4 , 11 ) = 30 m , N ( 6 , 8 ) = 4 m , N ( 7 , 7 ) = 14 m , N ( 5 , 8 ) = 5 m , N (5,11) = 14 m , N ( 7 , 12 ) = 4 m , N ( 8 , 8 ) = 2 m n + 12 m , N ( 8 , 9 ) = 21 m , N ( 8 , 10 ) = 6 m , N ( 8 , 11 ) = 26 m , N ( 7 , 8 ) = 4 m , N ( 7 , 9 ) = 6 m , N ( 7 , 10 ) = 12 m , N ( 6 , 9 ) = m + 1 , N ( 9 , 9 ) = 1 , N ( 9 , 10 ) = 2 m , N ( 9 , 11 ) = 8 m , N ( 10 , 10 ) = 2 m , N ( 10 , 12 ) = 4 m , N ( 11 , 11 ) = 21 m .□

Now, by using the definition of NM-polynomial, we have

NM ( G ) = i j N ( i , j ) x i y j = N ( 2 , 5 ) x 2 y 5 + N ( 3 , 7 ) x 3 y 7 + N ( 3 , 8 ) x 3 y 8 + N ( 3 , 9 ) x 3 y 9 + N ( 4 , 6 ) x 4 y 6 + N ( 4 , 7 ) x 4 y 7 + N ( 4 , 8 ) x 4 y 8 + N ( 4 , 9 ) x 4 y 9 + N ( 4 , 10 ) x 4 y 10 + N ( 4 , 11 ) x 4 y 11 + N (6,8) x 6 y 8 + N (5,8) x 5 y 8 + N (5,11) x 5 y 11 + N (7,7) x 7 y 7 + N (7,12) x 7 y 12 + N (8,8) x 8 y 8 + N (8,9) x 8 y 9 + N (8,10) x 8 y 10 + N (8,11) x 8 y 11 + N (7,8) x 7 y 8 + N (7,9) x 7 y 9 + N (7,10) x 7 y 10 + N (6,9) x 6 y 9 + N (9,9) x 9 y 9 + N (9,10) x 9 y 10 + N (9,19) x 9 y 11 + N (10,10) x 10 y 10 + N (10,12) x 10 y 12 + N (11,11) x 11 y 11

By using the values of N ( i , j ) , we obtain

NM ( G ; x , y ) = 19 m x 2 y 5 + 18 m x 3 y 7 + 6 m x 3 y 8 + ( m + 1 ) x 3 y 9 + 6 x 4 y 6 + 10 m x 4 y 7 + (4 m n + 30 m ) x 4 y 8 + 11 m x 4 y 9 + 4 m x 4 y 10 + 30 m x 4 y 11 + 4 m x 6 y 8 + 14 m x 7 y 7 + 5 m x 5 y 8 + 14 m x 5 y 11 + 4 m x 7 y 12 + (2 m n + 12 m ) x 8 y 8 + 21 m x 8 y 9 + 6 m x 8 y 10 + 26 m x 8 y 11 + 4 m x 7 y 8 + 6 m x 7 y 9 + 12 m x 7 y 10 + ( m + 1 ) x 6 y 9 + x 9 y 9 + 2 m x 9 y 10 + 8 m x 9 y 11 + 2 m x 10 y 10 + 4 m x 10 y 12 + 21 m x 11 y 11

NM ( G ; x , y ) = ( 4 x 4 y 8 + 2 x 8 y 8 ) m n + ( 19 x 2 y 5 + 18 x 3 y 7 + 6 x 3 y 8 + x 3 y 9 + 10 x 4 y 7 + 30 x 4 y 8 + 11 x 4 y 9 + 4 x 4 y 10 + 30 x 4 y 11 + 4 x 6 y 8 + 14 x 7 y 7 + 5 x 5 y 8 + 14 x 5 y 11 + 4 x 7 y 12 + 12 x 8 y 8 + 21 x 8 y 9 + 26 x 8 y 11 + 4 x 7 y 8 + 6 x 7 y 9 + 12 x 7 y 10 + x 6 y 9 + 2 x 9 y 10 + 8 x 9 y 11 + 2 x 10 y 10 + x 9 y 6 + 4 x 10 y 12 + 21 x 11 y 11 ) m + x 3 y 9 + 6 x 4 y 6 + x 9 y 6 + x 9 y 9

Theorem 4

Let G be a molecular graph of camptothecin–polymer conjugate IT-101 structure, then

M 1 = 80 m n + 4 , 441 m + 105

M 2 = 256 m n + 16 , 776 m + 306

F N = 576 m n + 37 , 795 m + 681

S = 883 , 949 , 568 2 , 744 , 000 m n + 5 , 960 , 284 , 677 250 , 000 m + 1 , 765 , 118 , 848 , 000 , 000 4 , 607 , 442 , 944 , 000

ND 3 = 3 , 584 m n + 286 , 726 m + 4 , 032

ND 5 = 14 m n + 4 , 913 , 119 6 , 930 m + 41 2

NH = 11 12 m n + 137 , 624 , 243 3 , 233 , 230 m + 29 18

NI = 56 3 m n + 3 , 335 , 165 , 313 3 , 233 , 230 m + 99 4

M 2 n m = 5 32 m n + 8 , 450 , 851 1 , 306 , 800 m + 103 324

NR α = ( 4 × 2 5 α + 2 × 2 6 α ) m n + ( 19 × 10 α + 18 × 21 α + 6 × 24 α + 10 × 28 α + 30 × 2 5 α + 27 α + 11 × 6 2 α + 4 × 40 α + 30 × 44 α + 4 × 48 α + 14 × 7 2 α + 5 × 40 α + 14 × 55 α + 4 × 84 α + 12 × 2 6 α + 21 × 72 α + 26 × 88 α + 4 × 56 α + 6 × 63 α + 10 × 70 α + 2 × 80 α + 2 × 90 α + 2 × 10 2 α + 4 × 80 α + 54 α + 8 × 99 α + 2 × 70 α + 4 × 120 α + 21 × 11 2 α ) m + 3 3 α + 6 × 24 α + 54 α + 9 2 α

Proof 4

The formula of the NM-polynomial of G is given as follows:

NM ( G ; x , y ) = ( 4 x 4 y 8 + 2 x 8 y 8 ) m n + ( 19 x 2 y 5 + 18 x 3 y 7 + 6 x 3 y 8 + x 3 y 9 + 10 x 4 y 7 + 30 x 4 y 8 + 11 x 4 y 9 + 4 x 4 y 10 + 30 x 4 y 11 + 4 x 6 y 8 + 14 x 7 y 7 + 5 x 5 y 8 + 14 x 5 y 11 + 4 x 7 y 12 + 12 x 8 y 8 + 21 x 8 y 9 + 26 x 8 y 11 + 4 x 7 y 8 + 6 x 7 y 9 + 10 x 7 y 10 + 2 x 8 y 10 + 2 x 9 y 10 + 2 x 10 y 10 + 4 x 10 y 8 + x 9 y 6 + 8 x 9 y 11 + 2 x 10 y 7 + 4 x 10 y 12 + 21 x 11 y 11 ) m + x 3 y 9 + 6 x 4 y 6 + x 9 y 6 + x 9 y 9

Then the degree based TIs can be calculated as follows:

( D x + D y ) ( NM ( G ) ) = ( 48 x 4 y 8 + 32 x 8 y 8 ) m n + ( 133 x 2 y 5 + 180 x 3 y 7 + 66 x 3 y 8 + 12 x 3 y 9 + 110 x 4 y 7 + 360 x 4 y 8 + 143 x 4 y 9 + 56 x 4 y 10 + 450 x 4 y 11 + 56 x 6 y 8 + 196 x 7 y 7 + 65 x 5 y 8 + 224 x 5 y 11 + 76 x 7 y 12 + 192 x 8 y 8 + 357 x 8 y 9 + 494 x 8 y 11 + 60 x 7 y 8 + 96 x 7 y 9 + 170 x 7 y 10 + 36 x 8 y 10 + 38 x 9 y 10 + 40 x 10 y 10 + 72 x 10 y 8 + 15 x 9 y 6 + 160 x 9 y 11 + 34 x 10 y 7 + 88 x 10 y 12 + 462 x 11 y 11 ) m + 12 x 3 y 9 + 60 x 4 y 6 + 15 x 9 y 6 + 18 x 9 y 9 M 1 ( G ) = 80 m n + 4 , 441 m + 105

D x D y ( NM ( G ) ) = ( 128 x 4 y 8 + 128 x 8 y 8 ) m n + ( 190 x 2 y 5 + 378 x 3 y 7 + 144 x 3 y 8 + 27 x 3 y 9 + 280 x 4 y 7 + 960 x 4 y 8 + 396 x 4 y 9 + 160 x 4 y 10 + 1 , 320 x 4 y 11 + 192 x 6 y 8 + 686 x 7 y 7 + 200 x 5 y 8 + 770 x 5 y 11 + 336 x 7 y 12 + 768 x 8 y 8 + 1 , 512 x 8 y 9 + 2,288 x 8 y 11 + 224 x 7 y 8 + 378 x 7 y 9 + 700 x 7 y 10 + 160 x 8 y 10 + 180 x 9 y 10 + 200 x 10 y 10 + 320 x 10 y 8 + 54 x 9 y 6 + 792 x 9 y 11 + 140 x 10 y 7 + 480 x 10 y 12 + 2 , 541 x 11 y 11 ) m + 27 x 3 y 9 + 144 x 4 y 6 + 54 x 9 y 6 + 81 x 9 y 9 M 2 ( G ) = 256 m n + 16 , 776 m + 306

( D x 2 + D y 2 ) ( NM ( G ) ) = ( 320 x 4 y 8 + 256 x 8 y 8 ) m n + ( 551 x 2 y 5 + 1,044 x 3 y 7 + 438 x 3 y 8 + 90 x 3 y 9 + 650 x 4 y 7 + 2 , 400 x 4 y 8 + 1,067 x 4 y 9 + 464 x 4 y 10 + 4 , 110 x 4 y 11 + 400 x 6 y 8 + 1,372 x 7 y 7 + 445 x 5 y 8 + 2 , 044 x 5 y 11 + 772 x 7 y 12 + 1,536 x 8 y 8 + 3,045 x 8 y 9 + 4 , 810 x 8 y 11 + 452 x 7 y 8 + 780 x 7 y 9 + 1,490 x 7 y 10 + 328 x 8 y 10 + 362 x 9 y 10 + 400 x 10 y 10 + 656 x 10 y 8 + 117 x 9 y 6 + 1 , 616 x 9 y 11 + 298 x 10 y 7 + 976 x 10 y 12 + 5 , 082 x 11 y 11 ) m + 90 x 3 y 9 + 312 x 4 y 6 + 117 x 9 y 6 + 162 x 9 y 9 F N ( G ) = 576 m n + 37 , 795 m + 681

I x 3 Q 2 J D x 3 D y 3 ( NM ( G ) ) = 131 , 072 1 , 000 x 10 + 524 , 288 2 , 744 x 14 m n + 19 , 000 125 x 5 + 166 , 698 512 x 8 + 82 , 944 729 x 9 + 19 , 683 1 , 000 x 10 + 219 , 520 729 x 9 + 983 , 040 1 , 000 x 10 + 513 , 216 1 , 331 x 11 + 256 , 000 1 , 728 x 12 + 2 , 555 , 520 2 , 197 x 13 + 442 , 368 1 , 728 x 12 + 1 , 647 , 086 1 , 728 x 12 + 320 , 000 1 , 331 x 11 + 2 , 329 , 250 2 , 744 x 14 + 2 , 370 , 816 4 , 913 x 17 + 3 , 145 , 728 2 , 744 x 14 + 7 , 838 , 208 3 , 375 x 15 + 17 , 718 , 272 4 , 913 x 17 + 702 , 464 2 , 197 x 13 + 1 , 500 , 282 2 , 744 x 14 + 3 , 430 , 000 3 , 375 x 15 + 1 , 024 , 000 4 , 096 x 16 + 1 , 458 , 000 4 , 913 x 17 + 2 , 000 , 000 5 , 832 x 18 + 2 , 048 , 000 4 , 096 x 16 + 157 , 464 2 , 197 x 13 + 7 , 762 , 392 5 , 832 x 18 + 686 , 000 3 , 375 x 15 + 6 , 912 , 000 8 , 000 x 20 + 37 , 202 , 781 8 , 000 x 20 m + 19 , 683 1 , 000 x 10 + 82 , 944 512 x 8 + 157 , 464 2 , 197 x 13 + 531 , 441 4 , 096 x 16

S ( G ) = 883 , 949 , 568 274 , 4000 m n + 5 , 960 , 284 , 677 250 , 000 m + 1 , 765 , 118 , 848 , 000 , 000 4 , 607 , 442 , 944 , 000

D x D y ( D x + D y ) ( NM ( G ) ) = ( 1 , 536 x 4 y 8 + 2,048 x 8 y 8 ) m n + ( 1 , 330 x 2 y 5 + 3,780 x 3 y 7 + 1 , 584 x 3 y 8 + 324 x 3 y 9 + 3,080 x 4 y 7 + 11,520 x 4 y 8 + 5 , 148 x 4 y 9 + 2,240 x 4 y 10 + 19,800 x 4 y 11 + 2 , 688 x 6 y 8 + 9 , 604 x 7 y 7 + 2,600 x 5 y 8 + 12,320 x 5 y 11 + 6,384 x 7 y 12 + 12 , 288 x 8 y 8 + 25,704 x 8 y 9 + 43,472 x 8 y 11 + 3 , 360 x 7 y 8 + 6 , 048 x 7 y 9 + 11,900 x 7 y 10 + 2,880 x 8 y 10 + 3 , 420 x 9 y 10 + 4 , 000 x 10 y 10 + 5,760 x 10 y 8 + 810 x 9 y 6 + 15,840 x 9 y 11 + 2 , 380 x 10 y 7 + 10,560 x 10 y 12 + 55,902 x 11 y 11 ) m + 324 x 3 y 9 + 1,440 x 4 y 6 + 810 x 9 y 6 + 1,458 x 9 y 9 ND 3 ( G ) = 3 , 584 m n + 286 , 726 m + 4 , 032

( D x I y + I x D y ) ( NM ( G ) ) = ( 10 x 4 y 8 + 4 x 8 y 8 ) m n + 551 10 x 2 y 5 + 348 7 x 3 y 7 + 73 4 x 3 y 8 + 10 3 x 3 y 9 + 325 14 x 4 y 7 + 75 x 4 y 8 + 1 , 067 36 x 4 y 9 + 58 5 x 4 y 10 + 2 , 055 22 x 4 y 11 + 25 3 x 6 y 9 + 28 x 7 y 7 + 89 8 x 5 y 8 + 2 , 044 55 x 5 y 11 + 193 21 x 7 y 12 + 24 x 8 y 8 + 1 , 015 24 x 8 y 9 + 2 , 405 44 x 8 y 11 + 113 14 x 7 y 8 + 260 21 x 7 y 9 + 149 7 x 7 y 10 + 41 10 x 8 y 10 + 181 45 x 9 y 10 + 4 x 10 y 10 + 41 5 x 10 y 8 + 13 6 x 9 y 6 + 1 , 616 99 x 9 y 11 + 149 35 x 10 y 7 + 122 15 x 10 y 12 + 42 x 11 y 11 ) m + 10 3 x 3 y 9 + 13 x 4 y 6 + 13 6 x 9 y 6 + 2 x 9 y 9 ND 5 ( G ) = 14 m n + 4 , 913 , 119 6 , 930 m + 41 2

2 I x J ( NM ( G ) ) = 2 3 x 12 + 1 4 x 16 m n + 38 7 x 7 + 18 5 x 10 + 12 11 x 11 + 1 6 x 12 + 20 11 x 11 + 5 x 12 + 22 13 x 13 + 4 7 x 14 + 4 x 15 + 4 7 x 14 + 2 x 14 + 10 13 x 13 + 7 4 x 16 + 8 19 x 19 + 6 4 x 16 + 42 17 x 17 + 52 19 x 19 + 8 15 x 15 + 3 4 x 16 + 20 17 x 17 + 2 9 x 18

+ 4 19 x 19 + 1 5 x 20 + 4 9 x 18 + 2 15 x 15 + 4 5 x 20 + 4 17 x 17 + 4 11 x 22 + 21 11 x 22 m + 1 6 x 12 + 5 6 x 10 + 2 15 x 15 + 1 9 x 18 NH ( G ) = 11 12 m n + 137 , 624 , 243 323 , 3230 m + 29 18

I x J D x D y ( NM ( G ) ) = 128 12 x 12 + 128 16 x 16 m n + 190 7 x 7 + 378 10 x 10 + 144 11 x 11 + 27 12 x 12 + 280 11 x 11 + 960 12 x 12 + 396 13 x 13 + 160 14 x 14 + 88 x 15 + 96 7 x 14 + 49 x 14 + 200 13 x 13 + 385 8 x 16 + 336 19 x 19 + 48 x 16 + 1 , 512 17 x 17 + 2 , 288 19 x 19 + 224 15 x 15 + 189 8 x 16 + 700 17 x 17 + 80 9 x 18 + 180 19 x 19 + 200 20 x 20 + 160 9 x 18 + 54 15 x 15 + 198 5 x 20 + 140 17 x 17 + 240 11 x 22 + 231 2 x 22 m + 27 12 x 12 + 72 5 x 10 + 54 15 x 15 + 81 18 x 18 NI ( G ) = 56 3 m n + 3 , 335 , 165 , 313 3 , 233 , 230 m + 99 4

I x I y ( NM ( G ) ) = 1 8 x 4 y 8 + 1 32 x 8 y 8 m n + 19 10 x 2 y 5 + 6 7 x 3 y 7 + 1 4 x 3 y 8 + 1 27 x 3 y 9 + 5 14 x 4 y 7 + 15 16 x 4 y 8 + 11 36 x 4 y 9 + 1 10 x 4 y 10 + 15 22 x 4 y 11 + 1 12 x 6 y 8 + 2 7 x 7 y 7 + 1 8 x 5 y 8 + 14 55 x 5 y 11 + 1 21 x 7 y 12 + 3 16 x 8 y 8 + 7 24 x 8 y 9 + 13 44 x 8 y 11 + 1 14 x 7 y 8 + 2 21 x 7 y 9 + 1 7 x 7 y 10 + 1 40 x 8 y 10 + 1 145 x 9 y 10 + 1 50 x 10 y 10 + 1 20 x 10 y 8 + 1 54 x 9 y 6 + 8 99 x 9 y 11 + 1 35 x 10 y 7 + 1 30 x 10 y 12 + 21 121 x 11 y 11 m + 1 27 x 3 y 9 + 1 4 x 4 y 6 + 1 54 x 9 y 6 + 1 81 x 9 y 9 M 2 n m ( G ) = 5 32 m n + 8 , 450 , 851 1 , 306 , 800 m + 103 324

D x α D y α ( NM ( G ) ) = ( 4 × 2 5 α x 4 y 8 + 2 × 2 6 α x 8 y 8 ) m n + ( 19 × 10 α x 2 y 5 + 18 × 21 α x 3 y 7 + 6 × 24 α x 3 y 8 + 10 × 28 α x 4 y 7 + 30 × 2 5 α x 4 y 8 + 27 α x 3 y 9 + 11 × 6 2 α x 4 y 9 + 4 × 40 α x 4 y 10 + 30 × 44 α x 4 y 11 + 4 × 48 α x 6 y 8 + 14 × 7 2 α x 7 y 7 + 5 × 40 α x 5 y 8 + 14 × 55 α x 5 y 11 + 4 × 84 α x 7 y 12 + 12 × 2 6 α x 8 y 8 + 21 × 72 α x 8 y 9

+ 26 × 88 α x 8 y 11 + 4 × 56 α x 7 y 8 + 6 × 63 α x 7 y 9 + 10 × 70 α x 7 y 10 + 2 × 80 α x 8 y 10 + 2 × 90 α x 9 y 10 + 2 × 10 2 α x 10 y 10 + 4 × 80 α x 10 y 8 + 54 α x 9 y 6 + 8 × 99 α x 9 y 11 + 2 × 70 α x 10 y 7 + 4 × 120 α x 10 y 12 + 21 × 11 2 α x 11 y 11 ) m + 3 3 α x 3 y 9 + 6 × 24 α x 4 y 6 + 54 α x 9 y 6 + 9 2 α x 9 y 9 NR α ( G ) = ( 4 × 2 5 α + 2 × 2 6 α ) m n + ( 19 × 10 α + 18 × 21 α + 6 × 24 α + 10 × 28 α + 30 × 2 5 α + 27 α + 11 × 6 2 α + 4 × 40 α + 30 × 44 α + 4 × 48 α + 14 × 7 2 α + 5 × 40 α + 14 × 55 α + 4 × 84 α + 12 × 2 6 α + 21 × 72 α + 26 × 88 α + 4 × 56 α + 6 × 63 α + 10 × 70 α + 2 × 80 α + 2 × 90 α + 2 × 10 2 α + 4 × 80 α + 54 α + 8 × 99 α + 2 × 70 α + 4 × 120 α + 21 × 11 2 α ) m + 3 3 α + 6 × 24 α + 54 α + 9 2 α

We have plotted the 3D graph of each of the neighborhood degree-based topological index. These plots are depicted in Figures 711. The 3D plots helps to understand the behavior of TIs. We have also computed the numerical values of these TIs for different values of m and n . These values are given in Tables 5 and 6. It is easy to observe that the value of each topological index increases with the increase in the value of m and n .

Figure 7 
               3D plot of (a) 
                     
                        
                        
                           
                              
                                 M
                              
                              
                                 1
                              
                              
                                 ′
                              
                           
                           (
                           G
                           )
                        
                        {M}_{1}^{^{\prime} }(G)
                     
                   and (b) 
                     
                        
                        
                           
                              
                                 M
                              
                              
                                 2
                              
                              
                                 ⁎
                              
                           
                           (
                           G
                           )
                        
                        {M}_{2}^{\ast }(G)
                     
                  .
Figure 7

3D plot of (a) M 1 ( G ) and (b) M 2 ( G ) .

Figure 8 
               3D plot of (a) 
                     
                        
                        
                           
                              
                                 F
                              
                              
                                 N
                              
                              
                                 ⁎
                              
                           
                           (
                           G
                           )
                        
                        {F}_{N}^{\ast }(G)
                     
                   and (b) 
                     
                        
                        
                           S
                           (
                           G
                           )
                        
                        S(G)
                     
                  .
Figure 8

3D plot of (a) F N ( G ) and (b) S ( G ) .

Figure 9 
               3D plot of (a) 
                     
                        
                        
                           
                              
                                 ND
                              
                              
                                 3
                              
                           
                           (
                           G
                           )
                        
                        {\text{ND}}_{\text{3}}(G)
                     
                   and (b) 
                     
                        
                        
                           
                              
                                 ND
                              
                              
                                 5
                              
                           
                           (
                           G
                           )
                        
                        {\text{ND}}_{\text{5}}(G)
                     
                  .
Figure 9

3D plot of (a) ND 3 ( G ) and (b) ND 5 ( G ) .

Figure 10 
               3D plot of (a) 
                     
                        
                        
                           NH
                           (
                           G
                           )
                        
                        \text{NH}(G)
                     
                   and (b) 
                     
                        
                        
                           NI
                           (
                           G
                           )
                        
                        \text{NI}(G)
                     
                  .
Figure 10

3D plot of (a) NH ( G ) and (b) NI ( G ) .

Figure 11 
               3D plot of (a) 
                     
                        
                        
                           
                              M
                              2
                              
                              
                              
                              
                                 n
                                 m
                              
                           
                           ⁎
                           (
                           G
                           )
                        
                        {}^{nm}M_{2}\ast (G)
                     
                   and (b) 
                     
                        
                        
                           
                              
                                 NR
                              
                              
                                 α
                              
                           
                           (
                           G
                           )
                        
                        {\text{NR}}_{\alpha }(G)
                     
                  .
Figure 11

3D plot of (a) M 2 n m ( G ) and (b) NR α ( G ) .

Table 5

Numerical values of neighborhood degree-based TIs for different values of m and n .

[m, n] M 1′(G) M 2 (G) F N (G) S(G) ND3(G)
[1,1] 4,626 17,338 39,052 24,546.37938 294,342
[2,2] 9,307 34,882 78,575 49,353.93526 591,820
[3,3] 14,148 52,938 119,250 74,805.76924 896,466
[4,4] 19,149 71,506 161,077 100,901.88134 1,208,280
[5,5] 24,310 90,586 204,056 127,642.27154 1,527,262
[6,6] 29,631 110,178 248,187 155,026.93986 1,853,412
[7,7] 35,112 130,282 293,470 183,055.88629 2,186,730
[8,8] 40,753 150,898 339,905 211,729.11083 2,527,216
[9,9] 46,554 172,026 387,492 241,046.61348 2,874,870
[10,10] 52,515 193,666 436,231 271,008.39424 3,229,692
Table 6

Numerical values of neighborhood degree-based TIs for different values of m and n .

[m, n] ND5(G) NH(G) NI(G) n M 2⁎(G) NR a (G)
[1,1] 743.46 45.093 1,074.9 6.9408 17,338
[2,2] 1,494.4 90.409 2,162.5 13.876 2.5193 × 10 06
[3,3] 2,273.4 137.56 3,287.3 21.124 3.2322 × 10 08
[4,4] 3,080.4 186.54 4,449.5 28.684 4.0893 × 10 10
[5,5] 3,915.3 237.36 5,649.1 36.557 5.2005 × 10 12
[6,6] 4,778.3 290.00 6,885.9 44.743 6.6621 × 10 14
[7,7] 5,669.2 344.49 8,160.1 53.241 8.5835 × 10 16
[8,8] 6,588.2 400.80 9,471.6 62.051 1.1099 × 10 19
[9,9] 7,535.2 458.95 10,820 71.174 1.4375 × 10 21
[10,10] 8,510.1 518.93 12,207 80.609 1.8620 × 10 23

3 Topological descriptors of different anticancer drugs

Cancer drugs, also known as anticancer or antineoplastic agents, are medications designed to treat various types of cancer by targeting and killing rapidly dividing cells. These drugs include chemotherapy agents like alkylating agents, antimetabolites, and mitotic inhibitors, as well as newer targeted therapies and immunotherapies. Chemotherapy disrupts cell division or damages DNA, while targeted therapies focus on specific molecular pathways driving cancer growth. Immunotherapies harness the immune system to fight cancer more effectively. Although highly effective, these treatments can cause side effects such as fatigue, nausea, and weakened immunity due to their impact on normal cells. Cancer drugs remain a cornerstone of modern oncology, often used in combination to maximize efficacy.

In this section, we check the chemical applicability of TIs. We have considered the eccentricity-based TIs to estimate the physical properties of 29 anticancer drugs. The eccentricity-based TIs that we have considered are eccentric connectivity index, total eccentricity index, average eccentricity index, eccentricity-based geometric–arithmetic index, eccentric ABC index, and first Zagreb eccentricity index. The mathematical formula of these TIs is presented in Table 7.

Table 7

Formula of eccentricity based TIs

Topological index Mathematical formula
Eccentric connectivity index [40] v V d v ec ( v )
Total eccentricity index [41] v V ec ( v )
Average eccentricity index [42] 1 | V | v V ec ( v )
Eccentricity-based geometric–arithmetic index [43] v v E 2 ec ( u ) ec ( v ) ec ( u ) + ec ( v )
Eccentric ABC index [44] v v E ec ( u ) + ec ( v ) 2 ec ( u ) ec ( v )
First Zagreb eccentricity index [45] u v V ec ( v ) + ec ( u )

We use a linear regression model P = a T I + b to estimate the physicochemical properties of 29 anticancer drugs, where TIs are considered independent variables, and the physicochemical properties are considered dependent variables. The 29 anticancer drugs under consideration are as follows: altretamine, bendamustine, busulfan, carboquone, carmustine, chlorambucil, chlormethine, chlorozotocin, cyclophosphamide, dacarbazine, fotemustine, ifosfamide, lomustine, melphalan, melphalan flufenamide, mitobronitol, nimustine, nitrosoureas, pipobroman, ranimustine, semustine, streptozotocin, temozolomide, thiotepa, treosulfan, triaziquone, triethylenemelamine, and trofosfamide.

We estimate four physicochemical properties – molecular weight, complexity, molecular refractivity, and molar volume – for these anticancer drugs. The experimental values of these properties were obtained from ChemSpider. The chemical formulas, molecular structures, and physicochemical property values of these drugs are presented in Table 8.

Table 8

Chemical formula and values of physicochemical properties of anticancer drugs

Drug Molecular formula Molecular weight Complexity Molecular refractivity Molar volume
Altretamine C9H18N6 210.28 148.0 2.7 48.4
Bendamustine C16H21Cl2N3O2 358.3 380.0 2.9 58.4
Busulfan C6H14O6S2 246.3 293.0 −0.5 104.0
Carboquone C15H19N3O5 321.33 643.0 −0.2 102.0
Carmustine C5H9Cl2N3O2 214.05 156.0 1.5 61.8
Chlorambucil C14H19Cl2NO2 304.2 250.0 1.7 40.5
Chlormethine C5H11Cl2N 156.05 43.7 0.9 3.2
Chlorozotocin C9H16ClN3O7 313.69 333.0 −2.6 160.0
Cyclophosphamide C7H15Cl2N2O2P 261.08 212.0 0.6 41.6
Dacarbazine C6H10N6O 182.18 215.0 −0.6 99.7
Fotemustine C9H19ClN3O5P 315.69 334.0 0.9 97.3
Ifosfamide C7H15Cl2N2O2P 261.08 218.0 0.9 41.6
Lomustine C9H16ClN3O2 233.69 219.0 2.8 61.8
Melphalan C13H18Cl2N2O2 305.2 265.0 −0.5 66.6
Melphalan flufenamide C24H30Cl2FN3O3 498.4 579.0 3.2 84.7
Mitobronitol C6H12Br2O4 307.96 110.0 −0.3 80.9
Nimustine C9H13ClN6O2 272.69 292.0 0.4 114.0
Nitrosoureas CH3N3O2 89.05 69.2 −0.8 84.6
Pipobroman C10H16Br2N2O2 356.05 227.0 0.4 40.6
Ranimustine C10H18ClN3O7 327.72 362.0 −1.7 141.0
Semustine C10H18ClN3O2 247.72 242.0 3.3 61.8
Streptozotocin C8H15N3O7 265.22 315.0 −1.4 152.0
Temozolomide C6H6N6O2 194.15 315.0 −1.1 106.0
Thiotepa C6H12N3PS 189.22 194.0 0.5 41.1
Treosulfan C6H14O8S2 278.3 345.0 −2.2 144.0
Triaziquone C12H13N3O2 231.25 494.0 −0.1 43.2
Triethylenemelamine C9H12N6 204.23 205.0 0.7 47.7
Trofosfamide C9H18Cl3N2O2P 323.6 265.0 1.8 32.8

To compute the eccentricity-based TIs, we developed a MAPLE-based algorithm, the pseudocode of which is provided in Algorithm 1 (see supplementary file). The values of the TIs for the 29 anticancer drugs were computed using this algorithm and are presented in Table 9. Linear regression models were developed using SPSS software, and regression parameters, namely, the correlation coefficient (R), R 2, and adjusted R 2, were calculated for each case. The values of these regression parameters for the physicochemical properties, including molecular weight, complexity, molecular refractivity, and molar volume, are presented in Tables 1013.

Table 9

Values of eccentricity-based TIs

Medicine Eccentric connectivity index Total eccentricity index Average eccentricity index Eccentricity-based geometric–arithmetic index Eccentric ABC index First Zagreb eccentricity index
Altretamine 147.0 78.0 5.2 14.92 23.95 147.0
Bendamustine 460.0 230.0 10.0 23.97 42.84 460.0
Busulfan 190.0 106.0 7.57 12.97 22.36 190.0
Carboquone 356.0 169.0 7.35 24.94 42.88 356.0
Carmustine 129.0 74.0 6.17 10.96 18.19 129.0
Chlorambucil 343.0 178.0 9.37 18.97 33.66 343.0
Chlormethine 61.0 37.0 4.63 6.95 10.75 61.0
Chlorozotocin 312.0 171.0 8.55 18.97 33.31 312.0
Cyclophosphamide 149.0 78.0 5.57 13.94 22.69 149.0
Dacarbazine 143.0 75.0 5.77 12.95 21.22 143.0
Fotemustine 274.0 151.0 7.95 17.96 31.21 274.0
Ifosfamide 162.0 85.0 6.07 13.94 23.1 162.0
Lomustine 206.0 106.0 7.07 14.96 25.57 206.0
Melphalan 317.0 165.0 8.68 18.97 33.31 317.0
Melphalan flufenamide 932.0 461.0 13.97 33.97 62.92 932.0
Mitobronitol 114.0 66.0 5.5 10.95 17.73 114.0
Nimustine 301.0 155.0 8.61 17.97 31.64 301.0
Nitrosoureas 31.0 20.0 3.33 4.93 6.78 31.0
Pipobroman 254.0 132.0 8.25 15.97 27.88 254.0
Ranimustine 360.0 186.0 8.86 20.96 37.04 360.0
Semustine 240.0 124.0 7.75 15.96 27.68 240.0
Streptozotocin 262.0 137.0 7.61 17.95 30.99 262.0
Temozolomide 153.0 75.0 5.36 14.95 24.03 153.0
Thiotepa 86.0 38.0 3.45 12.86 18.06 86.0
Treosulfan 212.0 118.0 7.38 14.96 25.65 212.0
Triaziquone 217.0 94.0 5.53 19.93 32.51 217.0
Triethylenemelamine 183.0 78.0 5.2 17.92 28.95 183.0
Trofosfamide 201.0 106.0 6.24 16.93 28.18 201.0
Table 10

Regression parameters for molecular weight

Topological index Correlation coefficient (R) R 2 Adjusted R 2
Eccentric connectivity index 0.853 0.728 0.718
Total eccentricity index 0.876 0.767 0.749
Average eccentricity index 0.882 0.778 0.751
Eccentricity-based geometric–arithmetic index 0.911 0.831 0.802
ABC index 0.913 0.834 0.797
First Zagreb eccentricity index 0.916 0.839 0.796
Table 11

Regression parameters for complexity

Topological index Correlation coefficient (R) R 2 Adjusted R 2
Eccentric connectivity index 0.723 0.522 0.505
Total eccentricity index 0.770 0.593 0.561
Average eccentricity index 0.774 0.599 0.551
Eccentricity-based geometric–arithmetic index 0.878 0.772 0.734
ABC index 0.888 0.789 0.744
First Zagreb eccentricity index 0.891 0.795 0.739
Table 12

Regression parameters for molecular refractivity

Topological index Correlation coefficient (R) R 2 Adjusted R 2
Eccentric connectivity index 0.278 0.077 0.043
Total eccentricity index 0.332 0.110 0.042
Average eccentricity index 0.336 0.113 0.007
Eccentricity-based geometric–arithmetic index 0.417 0.174 0.036
ABC index 0.427 0.182 0.005
First Zagreb eccentricity index 0.461 0.212 −0.003
Table 13

Regression parameters for molar volume

Topological index Correlation coefficient (R) R 2 Adjusted R 2
Eccentric connectivity index 0.230 0.053 0.018
Total eccentricity index 0.444 0.197 0.135
Average eccentricity index 0.445 0.198 0.101
Eccentricity-based geometric–arithmetic index 0.539 0.290 0.172
ABC index 0.561 0.314 0.165
First Zagreb eccentricity index 0.588 0.346 0.168

4 Discussion

Linear regression is a statistical method used to model the relationship between one dependent variable and one or more independent variables. It predicts the dependent variable based on the values of the independent variables by fitting a straight line, known as the regression line, to the data points. The performance and quality of a linear regression model are often evaluated using metrics such as the correlation coefficient (R), R 2, and adjusted R 2. This value of R measures the strength and the direction of the linear relationship between the dependent and independent variables. It ranges from −1 to 1, where values close to 1 or −1 indicate a strong linear relationship (positive or negative), and values near 0 suggest no linear relationship. This metric R 2 quantifies the proportion of variance in the dependent variable that is explained by the independent variables in the model. It ranges from 0 to 1, where higher values indicate a better fit of the model to the data. For example, an R 2 value of 0.8 means 80% of the variability in the dependent variable is explained by the independent variables. While R 2 increases with the addition of more independent variables, adjusted R 2 accounts for the number of predictors and adjusts the value to prevent overfitting. It provides a more accurate measure of model quality by penalizing the inclusion of variables that do not significantly improve the model’s explanatory power. Together, these metrics help evaluate the effectiveness and reliability of a linear regression model, guiding analysts in building accurate and interpretable predictive models.

From Tables 1013, it can be observed that the eccentricity-based TIs exhibit a strong correlation with the physicochemical properties, particularly molecular weight and complexity. For molecular weight, the correlation coefficient ( R ) is 0.916, the R 2 value is 0.839, and the adjusted R 2 value is 0.796 for the first Zagreb eccentricity index. This indicates that 83.9% of the variability in molecular weight is explained by the First Zagreb eccentricity index. Similarly, for complexity, the R value is 0.891, the R 2 value is 0.795, and the adjusted R 2 value is 0.739, meaning that 79.5% of the variability in complexity is accounted for by the first Zagreb eccentricity index. For the remaining two properties, the regression parameter values are not statistically significant. Therefore, these properties cannot be reliably estimated using the considered TIs.

5 Conclusion

This study focuses on the computation of M- and NM-polynomials for the camptothecin–polymer conjugate IT-101. From these polynomials, we derived various degree-based and neighborhood degree-based TIs for the molecule. The computation of these TIs offers valuable insights into the physical properties and chemical behavior of camptothecin–polymer conjugate IT-101. By utilizing these indices, it becomes possible to predict important molecular properties, thereby contributing to the drug design and development process.

In addition, we applied eccentricity-based TIs to estimate the physical properties of 29 anticancer drugs. The results demonstrate that molecular weight and complexity can be accurately predicted using the first Zagreb eccentricity index, with high correlation and predictive reliability. These findings underscore the utility of TIs as a tool for understanding molecular properties and optimizing drug discovery efforts.

  1. Funding information: This work was supported by Researchers Supporting Project number (RSP2025R401), King Saud University, Riyadh, Saudi Arabia.

  2. Author contributions: LT: Conceptualization, Methodology. LZ: Software, Validation. MMA: Data curation, Writing – Original draft preparation. MN: Visualization, Investigation. FT: Visualization, Writing – Reviewing and Editing. YW: Writing – Reviewing and Editing.

  3. Conflict of interest: Authors state no conflict of interest.

  4. Data availability statement: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

[1] Shirinivas SG, Vetrivel S, Elango NM. Applications of graph theory in computer science an overview. Int J Eng Sci Technol. 2010;2(9):4610–21.Suche in Google Scholar

[2] Liu JB, Arockiaraj M, Arulperumjothi M, Prabhu S. Distance based and bond additive topological indices of certain repurposed antiviral drug compounds tested for treating COVID-19. Int J Quantum Chem. 2021;121(10):e26617.Suche in Google Scholar

[3] Gutman I, Trinajstic N. Graph theory and molecular orbitals. Total -electron energy of alternant hydrocarbons. Chem Phys Lett. 1972;17(4): 535–8.Suche in Google Scholar

[4] Nikolić S, Kovačević G, Miličević A, Trinajstić N. The Zagreb indices 30 years after. Croat Chem Acta. 2003;76(2):113–24.Suche in Google Scholar

[5] Trinajstic N. Chemical graph theory (2nd ed.). CRC Press; 1992. 10.1201/9781315139111.Suche in Google Scholar

[6] Furtula B, Graovac A, Vukičević D. Augmented zagreb index. J Math Chem. 2010;48(2):370–80.Suche in Google Scholar

[7] Randic M. The connectivity index 25 years after. J Mol Graph Model. 2001;20(1):19–35.Suche in Google Scholar

[8] Balaban AT. Highly discriminating distance-based topological index. Chem Phys Lett. 1982;89(5):399–404.Suche in Google Scholar

[9] Balaban AT. Applications of graph theory in chemistry. J Chem Inf Comput Sci. 1985;25(3):334–43.Suche in Google Scholar

[10] Vergniory MG, Elcoro L, Wang Z, Cano J, Felser C, Aroyo MI, et al. Graph theory data for topological quantum chemistry. Phys Rev E. 2017;96(2):023310.Suche in Google Scholar

[11] Shafiei F. Relationship between topological indices and thermodynamic properties and of the monocarboxylic acids applications in QSPR. Iran J Math Chem. 2015;6(1):15–28.Suche in Google Scholar

[12] Shirakol S, Kalyanshetti M, Hosaman SM. QSPR analysis of certain distance based topological indices. Appl Math Nonlinear Sci. 2019;4(2):371–86.Suche in Google Scholar

[13] Ahmad Z, Mufti ZS, Nadeem MF, Shaker H, Siddiqui HM. Theoretical study of energy, inertia and nullity of phenylene and anthracene. Open Chem. 2021;19(1):541–7.Suche in Google Scholar

[14] Khalid A, Kausar N, Munir M, Aydi H, Kousar S, Gaba YU. The degree-based topological indices for two special families of graphs of diameter three. Adv Math Phys. 2021;2021:4051026.Suche in Google Scholar

[15] Chen R, Naeem M, Ishaq M, Tawfiq FM, Rauf A, Aslam A. Mathematically modeling of Ge-Sb-Te superlattice to estimate the physico-chemical characteristics. Ain Shams Eng J. 2024;15:102617.Suche in Google Scholar

[16] Naeem M, Rauf A, Mumtaz MW, Ameen N. Predictive ability of physiochemical properties of benzene derivatives using Ve-degree of end vertices-based entropy. J Biomol Struct Dyn. 2023;42(22):12342–52.Suche in Google Scholar

[17] Zhong JF, Rauf A, Naeem M, Rahman J, Aslam A. Quantitative structure-property relationships (QSPR) of valency based topological indices with Covid-19 drugs and application. Arab J Chem. 2021;14(7):103240.Suche in Google Scholar

[18] Masmali I, Naeem M, Ishaq M, Koam AN. Mathematical modeling of irregularity indices for adriamycin and their statistical analysis for emetic drugs. Ain Shams Eng J. 2024;15:102721.Suche in Google Scholar

[19] Zhong JF, Rauf A, Naeem M, Rahman J, Aslam A. Quantitative structure-property relationships (QSPR) of valency based topological indices with Covid-19 drugs and application. Arab J Chem. 2021;14(1):1–16.Suche in Google Scholar

[20] Deutsch E, Klavžar S. M-polynomial and degree-based topological indices. Iran J Math Chem. 2015;6(2):93–102.Suche in Google Scholar

[21] Munir M, Nazeer W, Rafique S, Kang SM. M-polynomial and related topological indices of Nanostar dendrimers. Symmetry. 2016;8(9):97.Suche in Google Scholar

[22] Kwun YC, Munir M, Nazeer W, Rafique S, Min Kang S. M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori. Sci Rep. 2017;7(1):1–9.Suche in Google Scholar

[23] West DB. Introduction to graph theory. Vol. 2. Upper Saddle River: Prentice Hall; 2001.Suche in Google Scholar

[24] Liu R, Du XU, Jia H. Wiener index on traceable and Hamiltonian graphs. Bull Aust Math Soc. 2016;94(3):362–72.Suche in Google Scholar

[25] Mujahed H, Nagy B. Wiener index on rows of unit cells of the face-centred cubic lattice. Acta Crystallogr Sect A: Found Adv. 2016;72(2):243–9.Suche in Google Scholar

[26] Knor M, Škrekovski R, Tepeh A. Orientations of graphs with maximum Wiener index. Discret Appl Math. 2016;211:121–9.Suche in Google Scholar

[27] Das KC. On comparing Zagreb indices of graphs. MATCH Commun Math Comput Chem. 2010;63(2):433–40.Suche in Google Scholar

[28] Gutman I, Milovanović E, Milovanović I. Beyond the Zagreb indices. AKCE Int J Graphs Comb. 2020;17(1):74–85.Suche in Google Scholar

[29] Gentile C, Stecca G, Ventura P, editors. Graphs and combinatorial optimization: from theory to applications. CTW2020 Proceedings. Vol. 5. Springer Nature; 2021.Suche in Google Scholar

[30] Fath-Tabar GH. Old and new Zagreb indices of graphs. MATCH Commun Math Comput Chem. 2011;65(1):79–84.Suche in Google Scholar

[31] Zhou B, Trinajstić N. On a novel connectivity index. J Math Chem. 2009;46(4):1252–70.Suche in Google Scholar

[32] Caporossi G, Gutman I, Hansen P, Pavlović L. Graphs with maximum connectivity index. Comput Biol Chem. 2003;27(1):85–90.Suche in Google Scholar

[33] Zhong L. The harmonic index for graphs. Appl Math Lett. 2012;25(3):561–6.Suche in Google Scholar

[34] Alamian V, Bahrami A, Edalatzadeh B. PI polynomial of V-phenylenic nanotubes and nanotori. Int J Mol Sci. 2008;9(3):229–34.Suche in Google Scholar

[35] Munir M, Nazeer W, Rafique S, Kang SM. M-polynomial and degree-based topological indices of polyhex nanotubes. Symmetry. 2016;8(12):149.Suche in Google Scholar

[36] Ahmad A, Hasni R, Elahi K, Asim MA. Polynomials of degree-based indices for swapped networks modeled by optical transpose interconnection system. IEEE Access. 2020;8:214293–9.Suche in Google Scholar

[37] Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82.Suche in Google Scholar

[38] Schluep T, Hwang J, Cheng J, Heidel JD, Bartlett DW, Hollister B, et al. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res. 2006;12(5):1606–14.Suche in Google Scholar

[39] Schultz AG. Camptothecin. Chem Rev. 1973;73(4):385–405.Suche in Google Scholar

[40] Morgan MJ, Mukwembi S, Swart HC. On the eccentric connectivity index of a graph. Discrete Math. 2011;311(13):1229–34.Suche in Google Scholar

[41] Fathalikhani K, Faramarzi H, Yousefi-Azari H. Total eccentricity of some graph operations. Electron Notes Discrete Math. 2014;45:125–31.Suche in Google Scholar

[42] Osaye FJ. The average eccentricity of a graph with prescribed girth. Discrete Math. 2022;345(12):113066.Suche in Google Scholar

[43] Ghorbani M, Khaki A. A note on the fourth version of geometric arithmetic index. Optoelectron Adv Mater-Rapid Commun. 2010;4(12):2212–5.Suche in Google Scholar

[44] Farahani MR. Eccentricity version of atom bond connectivity index of benzenoid family ABC5(Hk). World Appl Sci J. 2013;21(9):1260–5.Suche in Google Scholar

[45] Vukicevi C, Graovac D. Note on the comparison of the first and second normalized Zagreb eccentricity indices. Acta Chim Slov. 2010;57:524–8.Suche in Google Scholar

Received: 2023-07-07
Accepted: 2025-01-18
Published Online: 2025-03-25

© 2025 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mgmc-2023-0020/html
Button zum nach oben scrollen