Home Degree-based topological properties of borophene sheets
Article Open Access

Degree-based topological properties of borophene sheets

  • Ali Al Khabyah , Ali Ahmad EMAIL logo , Muhammad Azeem and Ali N. A. Koam
Published/Copyright: April 14, 2025

Abstract

This study examines many innovative topological numbers and establishes mathematical interpretations for boron clusters and borophene coverings. The general Randic index, arithmetic index, and Albertson index are discussed in this work for the alpha sheets of boron clusters. Boron cluster sheets are two-dimensional boron atom-based formations called borophene. They are similar to the two-dimensional sheet known as graphene, which is composed of carbon atoms arranged in a hexagonal lattice. The unique electrical, mechanical, and thermal properties of borophene make it a sought-after substance for a variety of uses, such as catalysis, energy storage, and electronics. There are two ways to manufacture borophene: chemical vapour deposition and molecular beam epitaxy. Degree-based topological numbers are a great example of a molecular descriptor that provides information on the connection of atoms in a molecule. These descriptions are based on the notion of a node’s degree in a molecular network, which indicates the number of neighbouring atoms that are directly connected to that node.

1 Introduction

Two-dimensional boron atom-based structures known as borophene include boron cluster sheets. They resemble graphene, a two-dimensional sheet made of carbon atoms that are organised in a hexagonal lattice. Due to its distinctive electrical, mechanical, and thermal characteristics, borophene is a desirable material for a wide range of applications, including catalysis, energy storage, and electronics. Molecular beam epitaxy and chemical vapour deposition are the two methods that can be used to synthesise borophene. Different boron atom layouts, including triangular, honeycomb, and rectangular patterns, can be achieved to produce borophene sheets [1,2,3].

Although there is still much to learn about the characteristics and prospective uses of borophene, several encouraging findings have already been made. For instance, it has been demonstrated that borophene possesses excellent electrical conductivity and may be utilised to make transparent and stretchable conductive films. It might potentially be used as a catalyst for numerous chemical processes and in energy storage systems [4,5,6,7]. Additional information on the boron cluster sheet, known as borophene, may be obtained to gain a more comprehensive understanding of its physical and chemical characteristics, as well as its many uses [8,9,10,11,12,13,14,15].

A prime instance of a molecular descriptor that offers details on the connectivity of atoms in a molecule is degree-based topological numbers. These descriptions are based on the idea of a node’s degree in a molecular network, which denotes how many nearby atoms are directly related to that node [16,17]. There are several types of degree-based topological numbers, including the following:

  • Vertex degree: The number of edges (bonds) that are connected to a given atom in a molecule.

  • Average degree: The average number of edges that are connected to all atoms in a molecule.

  • Eccentricity: The maximum number of edges that must be traversed to reach a given atom from any other atom in the molecule.

  • Wiener number: The sum of all pairwise distances between all pairs of atoms in a molecule.

  • Zagreb number: The sum of the squares of the vertex degrees of all atoms in a molecule [18,19].

Applications for degree-based topological numbers include drug design, modelling of quantitative structure–activity relationships, and molecular similarity analysis. They can offer a rapid and efficient technique to compare the connectivity of atoms in various compounds and are comparatively easy to compute [20,21]. Chemical species and chemical processes may be represented as nodes and edges in a graph, which can then be used to depict a chemical network. Chemical reactions link the reactants and products of the reaction together at their respective nodes. This makes it possible to describe the chemical network as a directed graph, where each node stands for a particular chemical species and each edge for a particular chemical process [22,23].

The transformation of a molecular system into a graph encompasses many distinct stages: It briefly indicates the substance entities that are participating inside the framework. Such a category encompasses several molecular objects, such as ions, molecules, and radicals in the body, as well as similar constituents. It ensures to indicate the molecular processes that establish connections between the various entities within the framework. Such a process might entail the examination and interpretation of empirical information, mathematical formulas, or various kinds of knowledge. Such compound entities should be allocated to individual vertices within the structure of the graph, while each of the chemical responses should be represented by an edge that directly connects the vertices that correspond to the reactants and products involved in the process [24]. Further data are included in visualization pertaining to relevant parameters for the analysis of the molecular system, such as the rate of reaction, concentrations of substances, or thermodynamic characteristics [25]. After the conversion of the molecular system into the form of a graph, a range of networking-theoretic methods and techniques can potentially be used to examine the structure as well as the motion of the system as a whole [26]. One potential implementation of centralization metrics is the identification of significant vertices within a system. Similarly, neighbourhood discovery techniques may be employed to locate clusters of vertices that exhibit high levels of interconnectedness. The use of this methodology could offer valuable observations on the dynamics of intricate molecular infrastructure, hence facilitating the strategic development of novel molecular interactions and procedures [27].

The study by Ajmal et al. [28] provides a comprehensive analysis of toroidal polyhex networks and generalized prisms within the context of our selected subject matter of geometrical numbers. Maji and Ghorai [29] examined the M-polynomials of the improvement networks, and in the study of Balasubramanian [30], Topochemie-2020 is a computer programming application designed for the calculation of structural numbers. In addition to M-polynomials, the introduction and extensive analysis of omega-sine waves have been undertaken for antiepileptic medicines [31]. The significance of uses in this unique notion is shown by the extensive examination of numbering polynomial functions in the field of chemical reactions [32,33], and topological numbers associated with zero-divisor graphs are noted in in the study of Ahmad and Lopez [34]. The comprehensive elucidation of oxide and silicate networks, together with their respective topological numbers, is provided in the study of Javaid and Jung [35]. The study by Ahmad et al. [36] explores the use of optical transposition interconnect systems to analyse switched systems, introducing the innovative notion of structural numbers. In the study of Munir et al. [37], the titania nanotubes; in the study of Siddiqui et al. [38], nanostar dendrimers; and in the study of Gao et al. [39], the notion of reverse degree-based topological numbers is discussed in relation to dendrimers. For further study on the application part of this work, one can refer to previous studies [40,41,42]. Particularly, the work on the Boron cluster, borophene sheet, and other chemical structures that are closely related to this work is given in the study of Zhang et al. [43].

In addition to numerical values, there are many more subjects that are intricately connected to topological numbers and their corresponding literary work, which may be discovered in previous studies [44,45,46,47,48,49,50,51,52,53,54,55,56].

2 Degree-based results of γ -sheet of boron clusters

Boron cluster sheets are two-dimensional boron atom-based formations called borophene. They are similar to the two-dimensional sheet known as graphene, which is composed of carbon atoms arranged in a hexagonal lattice. The unique electrical, mechanical, and thermal properties of borophene make it a sought-after substance for a variety of uses, such as catalysis, energy storage, and electronics. There are two ways to manufacture borophene: chemical vapour deposition and molecular beam epitaxy. To create borophene sheets, many arrangements of boron atoms, such as triangular, honeycomb, and rectangular patterns, may be created. Figure 1 shows the graph of γ -sheet of boron clusters for p = 6 and q = 3 , and Figure 5 shows a graph of α -sheet of boron clusters for p = 2 and q = 3 .

Figure 1 
               
                  
                     
                        
                        
                           γ
                        
                        \gamma 
                     
                  -sheet of boron clusters for 
                     
                        
                        
                           p
                           =
                           6
                        
                        p=6
                     
                   and 
                     
                        
                        
                           q
                           =
                           3
                        
                        q=3
                     
                  .
Figure 1

γ -sheet of boron clusters for p = 6 and q = 3 .

Lemma 2.1

Let G ( p , q ) be a γ -sheet of boron clusters. Then

T ( G ( p , q ) ) = pq ( ψ ˆ ( 4,4 ) + 4 ψ ˆ ( 4,5 ) + 2 ψ ˆ ( 4,6 ) + ψ ˆ ( 5,5 ) + 4 ψ ˆ ( 5,6 ) ) + p ( 4 ψ ˆ ( 3,5 ) + 2 ψ ˆ ( 3,6 ) ψ ˆ ( 4,4 ) 4 ψ ˆ ( 4,5 ) 2 ψ ˆ ( 4,6 ) ) + q ( 2 ψ ˆ ( 3,3 ) + 4 ψ ˆ ( 3,4 ) + 4 ψ ˆ ( 3,6 ) 4 ψ ˆ ( 4,5 ) ψ ˆ ( 5,5 ) 4 ψ ˆ ( 5,6 ) ) + 4 ψ ˆ ( 3,3 ) 4 ψ ˆ ( 3,4 ) 4 ψ ˆ ( 3,5 ) + 4 ψ ˆ ( 4,5 ) .

Proof

The graph G ( p , q ) contains 5 pq + 2 q vertices and 12 pq p + q edges. Each vertex of G ( p , q ) has degrees 3, 4, 5, or 6, and vertices of G ( p , q ) can be partitioned according to their degrees. Let

V i = { τ V ( G ( p , q ) ) : d τ = i } .

This means that the set V i contains the vertices of degree i . The set of vertices with respect to their degrees are as follows:

V 3 = { τ V ( G ( p , q ) ) : d τ = 3 } ,

V 4 = { τ V ( G ( p , q ) ) : d τ = 4 } ,

V 5 = { τ V ( G ( p , q ) ) : d τ = 5 } ,

V 6 = { τ V ( G ( p , q ) ) : d τ = 6 } ,

as | V 3 | = 2 p + 4 q , | V 4 | = 2 p ( q 1 ) , | V 5 | = 2 ( p 1 ) q , and | V 6 | = pq .

Let us divide the edges of G ( p , q ) into partition sets according to the degree of its end vertices. Let

Ξ 3,3 = { τ σ E ( G ( p , q ) ) : d τ = 3 , d σ = 3 } ,

Ξ 3,4 = { τ σ E ( G ( p , q ) ) : d τ = 3 , d σ = 4 } ,

Ξ 3,5 = { τ σ E ( G ( p , q ) ) : d τ = 3 , d σ = 5 } ,

Ξ 3,6 = { τ σ E ( G ( p , q ) ) : d τ = 3 , d σ = 6 } ,

Ξ 4,4 = { τ σ E ( G ( p , q ) ) : d τ = 4 , d σ = 4 } ,

Ξ 4,5 = { τ σ E ( G ( p , q ) ) : d τ = 4 , d σ = 5 } ,

Ξ 4,6 = { τ σ E ( G ( p , q ) ) : d τ = 4 , d σ = 6 } ,

Ξ 5,5 = { τ σ E ( G ( p , q ) ) : d τ = 5 , d σ = 5 } ,

Ξ 5,6 = { τ σ E ( G ( p , q ) ) : d τ = 5 , d σ = 6 } .

Note that E ( G ( p , q ) ) = Ξ 3,3 Ξ 3,4 Ξ 3,5 Ξ 3,6 Ξ 4,4 Ξ 4,5 Ξ 4,6 Ξ 5,5 Ξ 5,6 . The number of edges incident to the two vertices of degree 3 is 2 q + 4 , so | Ξ 3,3 | = 2 q + 4 . The number of edges incident to one vertex of degree 3 and other vertices of degrees 4, 5, and 6 are 4 q 4 , 4 p 4 , and 2 p + 4 q , respectively. Therefore, | Ξ 3,4 | = 4 q 4 , | Ξ 3,5 | = 4 p 4 , and | Ξ 3,6 | = 2 p + q . The number of edges incident to the two vertices of degree 4 is p ( q 1 ) , so | Ξ 4,4 | = p ( q 1 ) . The number of edges incident to one vertex of degree 4 and other vertices of degrees 5 and 6 are 4 ( p 1 ) ( q 1 ) , and 2 p ( q 1 ) , respectively. Therefore, | Ξ 4,5 | = 4 ( p 1 ) ( q 1 ) and | Ξ 4,6 | = 2 p ( q 1 ) . The number of edges incident to one vertex of degree 5 and other vertices of degrees 5 and 6 are ( p 1 ) q and 4 ( p 1 ) q , respectively. Therefore, | Ξ 5,5 | = ( p 1 ) q and | Ξ 5,6 | = 4 ( p 1 ) q . Hence,

T ( G ( p , q ) ) = τ σ E ( G ( p , q ) ) ψ ˆ ( d τ , d σ )

= τ σ Ξ 3,3 ψ ˆ ( 3,3 ) + τ σ Ξ 3,4 ψ ˆ ( 3,4 ) + τ σ Ξ 3,5 ψ ˆ ( 3,5 ) + τ σ Ξ 3,6 ψ ˆ ( 3,6 ) + τ σ Ξ 4,4 ψ ˆ ( 4,4 ) + τ σ Ξ 4,5 ψ ˆ ( 4,5 ) + τ σ Ξ 4,6 ψ ˆ ( 4,6 ) + τ σ Ξ 5,5 ψ ˆ ( 5,5 ) + τ σ Ξ 5,6 ψ ˆ ( 5,6 )

= ( 2 q + 4 ) ψ ˆ ( 3,3 ) + ( 4 q 4 ) ψ ˆ ( 3,4 ) + ( 4 p 4 ) ψ ˆ ( 3,5 ) + ( 2 p + 4 q ) ψ ˆ ( 3,6 ) + ( p ( q 1 ) ) ψ ˆ ( 4,4 ) + ( 4 ( p 1 ) ( q 1 ) ) ψ ˆ ( 4,5 ) + ( 2 p ( q 1 ) ) ψ ˆ ( 4,6 ) + ( ( p 1 ) q ) ψ ˆ ( 5,5 ) + ( 4 ( p 1 ) q ) ψ ˆ ( 5,6 )

= pq ( ψ ˆ ( 4,4 ) + 4 ψ ˆ ( 4,5 ) + 2 ψ ˆ ( 4,6 ) + ψ ˆ ( 5,5 ) + 4 ψ ˆ ( 5,6 ) ) + p ( 4 ψ ˆ ( 3,5 ) + 2 ψ ˆ ( 3,6 ) ψ ˆ ( 4,4 ) 4 ψ ˆ ( 4,5 ) 2 ψ ˆ ( 4,6 ) ) + q ( 2 ψ ˆ ( 3,3 ) + 4 ψ ˆ ( 3,4 ) + 4 ψ ˆ ( 3,6 ) 4 ψ ˆ ( 4,5 ) ψ ˆ ( 5,5 ) 4 ψ ˆ ( 5,6 ) ) + 4 ψ ˆ ( 3,3 ) 4 ψ ˆ ( 3,4 ) 4 ψ ˆ ( 3,5 ) + 4 ψ ˆ ( 4,5 ) .

In the following theorems, we determined the degree-based topological indices of γ -sheet of boron clusters.

Theorem 2.1

Let G ( p , q ) be a γ -sheet of boron clusters. Then, the general Randić index R α of G ( p , q ) is

R α ( G ( p , q ) ) = pq ( ( 16 ) α + 4 ( 20 ) α + 2 ( 24 ) α + ( 25 ) α + 4 ( 30 ) α ) + p ( 4 ( 15 ) α + 2 ( 18 ) α ( 16 ) α 4 ( 20 ) α 2 ( 24 ) α ) + q ( 2 ( 9 ) α + 4 ( 12 ) α + 4 ( 18 ) α 4 ( 20 ) α ( 25 ) α 4 ( 30 ) α ) + 4 ( 9 ) α 4 ( 12 ) α 4 ( 15 ) α + 4 ( 20 ) α .

The Randić index is

R 1 2 ( G ( p , q ) ) = ( 2.4830 ) pq ( 0.04850 ) p + ( 0.93952 ) q + 0.04024 ,

the second Zagreb index is

R 1 ( G ( p , q ) ) = 289 pq 48 p 8 q + 8 ,

the second modified Zagreb index is

R 1 ( G ( p , q ) ) = 623 1,200 pq + 23 720 p + 91 225 q + 2 45 ,

the general sum-connectivity index χ α of G ( p , q ) is

χ α ( G ( p , q ) ) = pq ( ( 8 ) α + 4 ( 9 ) α + 2 ( 10 ) α + ( 10 ) α + 4 ( 11 ) α ) + p ( 4 ( 8 ) α + 2 ( 9 ) α ( 8 ) α ) 4 ( 9 ) α 2 ( 10 ) α ) + q ( 2 ( 6 ) α + 4 ( 7 ) α + 4 ( 9 ) α 4 ( 9 ) α ( 10 ) α 4 ( 11 ) α ) ) + 4 ( 6 ) α 4 ( 7 ) α 4 ( 8 ) α + 4 ( 9 ) α ,

the sum-connectivity index is

χ 1 2 ( G ( p , q ) ) = ( 3.8415 ) pq ( 0.23853 ) p + ( 0.8062 ) q + 0.0402 ,

the first Zagreb index is

χ 1 ( G ( p , q ) ) = 118 pq 14 p 14 q ,

and the hyper-Zagreb index is

χ 2 ( G ( p , q ) ) = 1,172 pq 170 p 316 q + 16 .

Proof

For the general Randić index R α of G ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = ( d τ d σ ) α . Therefore, ψ ˆ ( 3,3 ) = ( 9 ) α , ψ ˆ ( 3,4 ) = ( 12 ) α , ψ ˆ ( 3,5 ) = ( 15 ) α , ψ ˆ ( 3,6 ) = ( 18 ) α , ψ ˆ ( 4,4 ) = ( 16 ) α , ψ ˆ ( 4,5 ) = ( 20 ) α , ψ ˆ ( 4,6 ) = ( 24 ) α , ψ ˆ ( 5,5 ) = ( 25 ) α , and ψ ˆ ( 5,6 ) = ( 30 ) α . Thus, by Lemma 2.1,□

R α ( G ( p , q ) ) = pq ( ψ ˆ ( 4,4 ) + 4 ψ ˆ ( 4,5 ) + 2 ψ ˆ ( 4,6 ) + ψ ˆ ( 5,5 ) + 4 ψ ˆ ( 5,6 ) ) + p ( 4 ψ ˆ ( 3,5 ) + 2 ψ ˆ ( 3,6 ) ψ ˆ ( 4,4 ) 4 ψ ˆ ( 4,5 ) 2 ψ ˆ ( 4,6 ) ) + q ( 2 ψ ˆ ( 3,3 ) + 4 ψ ˆ ( 3,4 ) + 4 ψ ˆ ( 3,6 ) 4 ψ ˆ ( 4,5 ) ψ ˆ ( 5,5 ) 4 ψ ˆ ( 5,6 ) ) + 4 ψ ˆ ( 3,3 ) 4 ψ ˆ ( 3,4 ) 4 ψ ˆ ( 3,5 ) + 4 ψ ˆ ( 4,5 )

= pq ( ( 16 ) α + 4 ( 20 ) α + 2 ( 24 ) α + ( 25 ) α + 4 ( 30 ) α ) + p ( 4 ( 15 ) α + 2 ( 18 ) α ( 16 ) α 4 ( 20 ) α 2 ( 24 ) α ) + q ( 2 ( 9 ) α + 4 ( 12 ) α + 4 ( 18 ) α 4 ( 20 ) α ( 25 ) α 4 ( 30 ) α ) + 4 ( 9 ) α 4 ( 12 ) α 4 ( 15 ) α + 4 ( 20 ) α .

If α = 1 2 , then we the get Randić index

R 1 2 ( G ( p , q ) ) = 2 5 5 + 9 20 + 6 6 + 2 30 15 pq + 4 15 15 + 2 3 1 4 2 5 5 6 6 p + 7 15 + 2 2 3 2 30 15 + 2 3 3 2 5 5 q 4 15 15 + 4 3 2 3 3 + 2 5 5 = ( 2.4830 ) pq ( 0.04850 ) p + ( 0.93952 ) q + 0.04024 .

If α = 1 , then we obtain the second Zagreb index

R 1 ( G ( p , q ) ) = 289 pq 48 p 8 q + 8 .

If α = 1 , then we obtain the second modified Zagreb index

R 1 ( G ( p , q ) ) = 623 1,200 pq + 23 720 p + 91 225 q + 2 45 .

For the general sum-connectivity index χ α of G ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = ( d τ + d σ ) α . Therefore, ψ ˆ ( 3,3 ) = ( 6 ) α , ψ ˆ ( 3,4 ) = ( 7 ) α , ψ ˆ ( 3,5 ) = ( 8 ) α , ψ ˆ ( 3,6 ) = ( 9 ) α , ψ ˆ ( 4,4 ) = ( 8 ) α , ψ ˆ ( 4,5 ) = ( 9 ) α , ψ ˆ ( 4,6 ) = ( 10 ) α , ψ ˆ ( 5,5 ) = ( 10 ) α , and ψ ˆ ( 5,6 ) = ( 11 ) α . Thus, by Lemma 2.1,

χ α ( G ( p , q ) ) = pq ( ψ ˆ ( 4,4 ) + 4 ψ ˆ ( 4,5 ) + 2 ψ ˆ ( 4,6 ) + ψ ˆ ( 5,5 ) + 4 ψ ˆ ( 5,6 ) ) + p ( 4 ψ ˆ ( 3,5 ) + 2 ψ ˆ ( 3,6 ) ψ ˆ ( 4,4 ) 4 ψ ˆ ( 4,5 ) 2 ψ ˆ ( 4,6 ) ) + q ( 2 ψ ˆ ( 3,3 ) + 4 ψ ˆ ( 3,4 ) + 4 ψ ˆ ( 3,6 ) 4 ψ ˆ ( 4,5 ) ψ ˆ ( 5,5 ) 4 ψ ˆ ( 5,6 ) ) + 4 ψ ˆ ( 3,3 ) 4 ψ ˆ ( 3,4 ) 4 ψ ˆ ( 3,5 ) + 4 ψ ˆ ( 4,5 )

= pq ( ( 8 ) α + 4 ( 9 ) α + 2 ( 10 ) α + ( 10 ) α + 4 ( 11 ) α ) + p ( 4 ( 8 ) α + 2 ( 9 ) α ( 8 ) α ) 4 ( 9 ) α 2 ( 10 ) α ) + q ( 2 ( 6 ) α + 4 ( 7 ) α + 4 ( 9 ) α 4 ( 9 ) α ( 10 ) α 4 ( 11 ) α ) ) + 4 ( 6 ) α 4 ( 7 ) α 4 ( 8 ) α + 4 ( 9 ) α .

If α = 1 2 , then we obtain the sum-connectivity index

χ 1 2 ( G ( p , q ) ) = 2 4 + 3 10 10 + 4 3 + 4 11 11 pq + 2 3 + 3 2 4 10 5 p + 4 7 7 + 6 3 4 11 11 10 10 q + 2 6 3 + 4 3 4 7 7 2 = ( 3.8415 ) pq ( 0.23853 ) p + ( 0.8062 ) q + 0.0402 .

If α = 1 , then we obtain the first Zagreb index χ 1 ( G ( p , q ) )

χ 1 ( G ( p , q ) ) = 118 pq 14 p 14 q .

If α = 2 , then we obtain the hyper-Zagreb index χ 2 ( G ( p , q ) )

χ 2 ( G ( p , q ) ) = 1,172 pq 170 p 316 q + 16 .

Theorem 2.2

Let G ( p , q ) be a γ -sheet of boron clusters. Then, the geometric-arithmetic index GA of G ( p , q ) is

GA ( G ( p , q ) ) = ( 11.918 ) pq ( 1.1763 ) p + ( 0.7716 ) q + 0.1432 ,

the atom-bond connectivity index ABC of G ( p , q ) is

ABC ( G ( p , q ) ) = ( 6.8901 ) pq ( 0.3565 ) p + ( 1.2868 ) q 0.0787 ,

the augmented Zagreb index AZI of G ( p , q ) is

AZI ( G ( p , q ) ) = ( 344.92 ) pq ( 69.752 ) p ( 125.87 ) q + 21.061 ,

the harmonic index H of G ( p , q ) is

H ( G ( p , q ) ) = 4,883 1,980 pq 17 180 p + 1,019 1,155 q + 5 63 ,

and the symmetric division degree index SDD of G ( p , q ) is

SDD ( G ( p , q ) ) = 74 3 pq 7 15 p + 4 q 6 5 .

Proof

For the geometric-arithmetic index GA of G ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = 2 d τ d σ d τ + d σ . Therefore, ψ ˆ ( 3,3 ) = 1 , ψ ˆ ( 3,4 ) = 2 12 7 , ψ ˆ ( 3,5 ) = 2 15 8 , ψ ˆ ( 3,6 ) = 2 18 9 , ψ ˆ ( 4,4 ) = 1 , ψ ˆ ( 4,5 ) = 2 20 9 , ψ ˆ ( 4,6 ) = 2 24 10 , ψ ˆ ( 5,5 ) = 1 , and ψ ˆ ( 5,6 ) = 2 30 11 . Thus, by Lemma 2.1,□

GA ( G ( p , q ) ) = 16 5 9 + 2 + 4 6 5 + 8 30 11 pq + 15 + 4 2 3 1 16 5 9 4 6 5 p + 1 + 8 2 3 8 30 11 + 16 3 7 16 5 9 q 15 + 4 16 3 7 + 16 5 9 = ( 11.918 ) pq ( 1.1763 ) p + ( 0.7716 ) q + 0.1432 .

For the atom-bond connectivity index ABC of G ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ + d σ 2 d τ d σ . So ψ ˆ ( 3,3 ) = 4 9 , ψ ˆ ( 3,4 ) = 5 12 , ψ ˆ ( 3,5 ) = 6 15 , ψ ˆ ( 3,6 ) = 7 18 , ψ ˆ ( 4,4 ) = 6 16 , ψ ˆ ( 4,5 ) = 7 20 , ψ ˆ ( 4,6 ) = 8 24 , ψ ˆ ( 5,5 ) = 8 25 , and ψ ˆ ( 5,6 ) = 9 30 . Thus, by Lemma 2.1,

ABC ( G ( p , q ) ) = 6 4 + 2 35 5 + 2 3 3 + 2 2 5 + 2 30 5 pq + 14 3 2 35 5 2 3 3 6 4 + 4 10 5 p + 2 15 3 + 4 3 2 35 5 + 2 14 3 2 2 5 2 30 5 q 4 10 5 + 8 3 2 15 3 + 2 35 5 = ( 6.8901 ) pq ( 0.3565 ) p + ( 1.2868 ) q 0.0787 .

For the augmented Zagreb index AZI of G ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ d σ d τ + d σ 2 3 . Therefore, ψ ˆ ( 3,3 ) = 729 64 , ψ ˆ ( 3,4 ) = 1,728 125 , ψ ˆ ( 3,5 ) = 3,375 216 , ψ ˆ ( 3,6 ) = 5,832 343 , ψ ˆ ( 4,4 ) = 4,096 216 , ψ ˆ ( 4,5 ) = 8,000 343 , ψ ˆ ( 4,6 ) = 13,824 512 , ψ ˆ ( 5,5 ) = 15,625 512 , and ψ ˆ ( 5,6 ) = 27,000 729 . Thus, by Lemma 2.1,

AZI ( G ( p , q ) ) = 545,166,215 1,580,544 pq 1,291,939 18,522 p 74,604,408,241 592,704,000 q + 14,447,819 686,000 = ( 344.92 ) pq ( 69.752 ) p ( 125.87 ) q + 21.061 .

For the harmonic index H of G ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = 2 d τ + d σ . Therefore, ψ ˆ ( 3,3 ) = 2 6 , ψ ˆ ( 3,4 ) = 2 7 , ψ ˆ ( 3,5 ) = 2 8 , ψ ˆ ( 3,6 ) = 2 9 , ψ ˆ ( 4,4 ) = 2 8 , ψ ˆ ( 4,5 ) = 2 9 , ψ ˆ ( 4,6 ) = 2 10 , ψ ˆ ( 5,5 ) = 2 10 , and ψ ˆ ( 5,6 ) = 2 11 . Thus, by Lemma 2.1,

H ( G ( p , q ) ) = 4,883 1,980 pq 17 180 p + 1,019 1,155 q + 5 63 .

For the symmetric division degree index SDD of G ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ 2 + d σ 2 d τ d σ . Therefore, ψ ˆ ( 3,3 ) = 18 9 , ψ ˆ ( 3,4 ) = 25 12 , ψ ˆ ( 3,5 ) = 34 15 , ψ ˆ ( 3,6 ) = 45 18 , ψ ˆ ( 4,4 ) = 32 16 , ψ ˆ ( 4,5 ) = 41 20 , ψ ˆ ( 4,6 ) = 52 24 , ψ ˆ ( 5,5 ) = 50 25 , and ψ ˆ ( 5,6 ) = 61 30 . Thus, by Lemma 2.1,

SDD ( G ( p , q ) ) = 74 3 pq 7 15 p + 4 q 6 5 .

Theorem 2.3

Let G ( p , q ) be a γ -sheet of boron clusters. Then, the Albertson index A of G ( p , q ) is

A ( G ( p , q ) ) = 12 pq + 6 p + 8 q 8 ,

the first redefined Zagreb index Re Z G 1 of G ( p , q ) is

ReZ G 1 ( G ( p , q ) ) = 5 pq + 2 q ,

the second redefined Zagreb index Re Z G 2 of G ( p , q ) is

ReZ G 2 ( G ( p , q ) ) = 28,807 990 pq 377 90 p 6,155 1,386 q + 67 126 ,

the third redefined Zagreb index ReZ G 3 of G ( p , q ) is

ReZ G 3 ( G ( p , q ) ) = 289 pq 48 p 87 q + 8 ,

and the variation of the Randić index R of G ( p , q ) is

R ( G ( p , q ) ) = 9 pq 4 p 4 + 2 q 3 + 1 3 .

Proof

For the Albertson index A of G ( p , q ) , we obtain ϕ ( d τ , d σ ) = | d τ d σ | . Therefore, ψ ˆ ( 3,3 ) = ψ ˆ ( 4,4 ) = ψ ˆ ( 5,5 ) = 0 , ψ ˆ ( 3,4 ) = ψ ˆ ( 4,5 ) = ψ ˆ ( 5,6 ) = 1 , ψ ˆ ( 3,5 ) = ψ ˆ ( 4,6 ) = 2 , and ψ ˆ ( 3,6 ) = 3 . Thus, by Lemma 2.1,

A ( G ( p , q ) ) = 12 pq + 6 p + 8 q 8 .

For the first redefined Zagreb index ReZ G 1 of G ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ + d σ d τ d σ . Therefore, ψ ˆ ( 3,3 ) = 6 9 , ψ ˆ ( 3,4 ) = 7 12 , ψ ˆ ( 3,5 ) = 8 15 , ψ ˆ ( 3,6 ) = 9 18 , ψ ˆ ( 4,4 ) = 8 16 , ψ ˆ ( 4,5 ) = 9 20 , ψ ˆ ( 4,6 ) = 10 24 , ψ ˆ ( 5,5 ) = 10 25 , and ψ ˆ ( 5,6 ) = 11 30 . Thus, by Lemma 2.1,

ReZ G 1 ( G ( p , q ) ) = 5 pq + 2 q .

For the second redefined Zagreb index ReZ G 2 of G ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ d σ d τ + d σ . Therefore, ψ ˆ ( 3,3 ) = 9 6 , ψ ˆ ( 3,4 ) = 12 7 , ψ ˆ ( 3,5 ) = 15 8 , ψ ˆ ( 3,6 ) = 18 9 , ψ ˆ ( 4,4 ) = 16 8 , ψ ˆ ( 4,5 ) = 20 9 , ψ ˆ ( 4,6 ) = 24 10 , ψ ˆ ( 5,5 ) = 25 10 , and ψ ˆ ( 5,6 ) = 30 11 . Thus, by Lemma 2.1,

ReZ G 2 ( G ( p , q ) ) = 28,807 990 pq 377 90 p 6,155 1,386 q + 67 126 .

For the third redefined Zagreb index ReZ G 3 of G ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ d σ ( d τ + d σ ) . Therefore, ψ ˆ ( 3,3 ) = 54 , ψ ˆ ( 3,4 ) = 84 , ψ ˆ ( 3,5 ) = 120 , ψ ˆ ( 3,6 ) = 162 , ψ ˆ ( 4,4 ) = 128 , ψ ˆ ( 4,5 ) = 180 , ψ ˆ ( 4,6 ) = 240 , ψ ˆ ( 5,5 ) = 250 , and ψ ˆ ( 5,6 ) = 330 . Thus, by Lemma 2.1,

ReZ G 3 ( G ( p , q ) ) = 289 pq 48 p 87 q + 8 .

For the variation of the Randić index R of G ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = 1 max { d τ , d σ } . Therefore, ψ ˆ ( 3,3 ) = 1 3 , ψ ˆ ( 3,4 ) = 1 4 , ψ ˆ ( 3,5 ) = 1 5 , ψ ˆ ( 3,6 ) = 1 6 , ψ ˆ ( 4,4 ) = 1 4 , ψ ˆ ( 4,5 ) = 1 5 , ψ ˆ ( 4,6 ) = 1 6 , ψ ˆ ( 5,5 ) = 1 5 , and ψ ˆ ( 5,6 ) = 1 6 . Thus, by Lemma 2.1,

R ( G ( p , q ) ) = 9 pq 4 p 4 + 2 q 3 + 1 3 .

A comparative study was done and the conclusions are drawn in Figures 24. These figures are from the numerical values of Tables 13, respectively.

Figure 2 
               Comparative study for 
                     
                        
                        
                           p
                           =
                           q
                           =
                           1
                           ,
                           2
                           ,
                           3
                           ,
                           …
                           ,
                           10
                        
                        p=q=1,2,3,\ldots ,10
                     
                  .
Figure 2

Comparative study for p = q = 1 , 2 , 3 , , 10 .

Figure 3 
               Comparative study for 
                     
                        
                        
                           p
                           =
                           q
                           =
                           1
                           ,
                           2
                           ,
                           3
                           ,
                           …
                           ,
                           10
                           .
                        
                        p=q=1,2,3,\ldots ,10.
Figure 3

Comparative study for p = q = 1 , 2 , 3 , , 10 .

Figure 4 
               Comparative study for 
                     
                        
                        
                           p
                           =
                           q
                           =
                           1
                           ,
                           2
                           ,
                           3
                           ,
                           …
                           ,
                           10
                        
                        p=q=1,2,3,\ldots ,10
                     
                  .
Figure 4

Comparative study for p = q = 1 , 2 , 3 , , 10 .

Table 1

Numerical behaviour of the γ -sheet for boron clusters

( p , q ) R 1 2 R 1 R 1 χ 1 2 χ 1 χ 2
(2,2) 11.75428 1,052 2.9939 16.54154 416 3,732
(3,3) 25.06030 2,441 6.0261 36.31671 978 9,106
(4,4) 43.33232 4,408 10.097 63.77488 1,776 16,824
(5,5) 66.57034 6,953 15.206 98.91605 2,810 26,886
(6,6) 94.77436 10,076 21.353 141.74022 4,080 39,292
(7,7) 127.94438 13,777 28.538 192.24739 5,586 54,042
(8,8) 166.08040 18,056 36.762 250.43756 7,328 71,136
(9,9) 209.18242 22,913 46.024 316.31073 9,306 90,574
(10,10) 257.25044 28,348 56.325 389.86690 11,520 112,356
Table 2

Numerical behaviour of γ -sheet of boron clusters

( p , q ) GA ( G ( p , q ) ) ABC ( G ( p , q ) ) AZI ( G ( p , q ) ) H ( G ( p , q ) ) SDD ( G ( p , q ) )
(2,2) 47.0058 29.3423 1,009.497 11.519777 104.53466
(3,3) 106.1911 64.7231 2,538.475 24.638583 231.40299
(4,4) 89.2124 113.8841 4,757.293 42.689789 407.60532
(5,5) 296.0697 176.8253 7,665.951 65.673395 633.14165
(6,6) 426.7630 253.5467 11,264.449 93.589401 908.01198
(7,7) 581.2923 344.0483 15,552.787 126.437807 1,232.21631
(8,8) 759.6576 448.3301 20,530.965 164.218613 1,605.75464
(9,9) 961.8589 566.3921 26,198.983 206.931819 2,028.62697
(10,10) 1,187.8962 698.2343 32,556.841 254.577425 2,500.83330
Table 3

Numerical behaviour of γ -sheet of boron clusters

( p , q ) ( G ( p , q ) ) ReZ G 1 ( G ( p , q ) ) ReZ G 2 ( G ( p , q ) ) ReZ G 3 ( G ( p , q ) ) R ( G ( p , q ) )
(2,2) 68 24 99.66435 894 10.16667
(3,3) 142 51 236.52465 2,204 21.83334
(4,4) 240 88 431.58095 4,092 38.00001
(5,5) 362 135 684.83325 6,558 58.66668
(6,6) 508 192 996.28155 9,602 83.83335
(7,7) 678 259 1,365.92585 13,224 113.50002
(8,8) 872 336 1,793.76615 17,424 147.66669
(9,9) 1,090 423 2,279.80245 22,202 186.33336
(10,10) 1,332 520 2,824.03475 27,558 229.50003

3 α -Sheets of boron clusters

In this section, we study the α -sheets of boron clusters; in Figure 5, it is shown for p = 2 and q = 3 .

Figure 5 
               
                  
                     
                        
                        
                           α
                        
                        \alpha 
                     
                  -sheets of boron clusters for 
                     
                        
                        
                           p
                           =
                           2
                        
                        p=2
                     
                   and 
                     
                        
                        
                           q
                           =
                           3
                           .
                        
                        q=3.
Figure 5

α -sheets of boron clusters for p = 2 and q = 3 .

Lemma 3.1

Let Γ ( p , q ) be a α -sheet of boron clusters. Then,

T ( Γ ( p , q ) ) = pq ( 18 ψ ˆ ( 5,5 ) + 24 ψ ˆ ( 5,6 ) ) + p ( 4 ψ ˆ ( 2,4 ) + 4 ψ ˆ ( 3,4 ) + 4 ψ ˆ ( 3,5 ) + 4 ψ ˆ ( 3,6 ) + 4 ψ ˆ ( 4,5 ) + 4 ψ ˆ ( 4,6 ) 7 ψ ˆ ( 5,5 ) 32 ψ ˆ ( 5,6 ) ) + q ( ψ ˆ ( 2,2 ) + 2 ψ ˆ ( 2,4 ) + ψ ˆ ( 3,3 ) + 2 ψ ˆ ( 3,4 ) + 2 ψ ˆ ( 3,6 ) + ψ ˆ ( 4,4 ) + 2 ψ ˆ ( 4,5 ) + 2 ψ ˆ ( 4,6 ) 4 ψ ˆ ( 5,5 ) 14 ψ ˆ ( 5,6 ) ) + 2 ψ ˆ ( 2,2 ) 4 ψ ˆ ( 2,4 ) + 2 ψ ˆ ( 3,3 ) 4 ψ ˆ ( 3,4 ) ψ ˆ ( 4,4 ) 4 ψ ˆ ( 4,5 ) 4 ψ ˆ ( 4,6 ) 5 ψ ˆ ( 5,5 ) + 24 ψ ˆ ( 5,6 ) .

Proof

The graph Γ ( p , q ) contains 16 pq 2 p + q + 1 vertices. Each vertex of Γ ( p , q ) has degrees 2, 3, 4, 5, or 6, and the vertices of Γ ( p , q ) can be partitioned according to their degrees. Let

V i = { τ V ( Γ ( p , q ) ) : d τ = i } .

This means that the set V i contains the vertices of degree i . The set of vertices with respect to their degrees are as follows:

V 2 = { τ V ( Γ ( p , q ) ) : d τ = 2 } ,

V 3 = { τ V ( Γ ( p , q ) ) : d τ = 3 } ,

V 4 = { τ V ( Γ ( p , q ) ) : d τ = 4 } ,

V 5 = { τ V ( Γ ( p , q ) ) : d τ = 5 } ,

V 6 = { τ V ( Γ ( p , q ) ) : d τ = 6 } ,

as | V 2 | = 2 ( p + q ) , | V 3 | = 2 ( 2 p + q ) , | V 4 | = 2 ( 2 p + 2 q 3 ) , | V 5 | = 2 ( 6 pq 5 p 3 q + 3 ) , and | V 6 | = 4 pq 2 p q + 1 . By using the handshaking lemma, we obtain 42 pq 15 p 5 q + 6 edges. Let us divide the edges of Γ ( p , q ) into partition sets according to the degree of its end vertices. Let

Ξ 2,2 = { τ σ E ( Γ ( p , q ) ) : d τ = 2 , d σ = 2 } ,

Ξ 2,4 = { τ σ E ( Γ ( p , q ) ) : d τ = 2 , d σ = 4 } ,

Ξ 3,3 = { τ σ E ( Γ ( p , q ) ) : d τ = 3 , d σ = 3 } ,

Ξ 3,4 = { τ σ E ( Γ ( p , q ) ) : d τ = 3 , d σ = 4 } ,

Ξ 3,5 = { τ σ E ( Γ ( p , q ) ) : d τ = 3 , d σ = 5 } ,

Ξ 3,6 = { τ σ E ( Γ ( p , q ) ) : d τ = 3 , d σ = 6 } ,

Ξ 4,4 = { τ σ E ( Γ ( p , q ) ) : d τ = 4 , d σ = 4 } ,

Ξ 4,5 = { τ σ E ( Γ ( p , q ) ) : d τ = 4 , d σ = 5 } ,

Ξ 4,6 = { τ σ E ( Γ ( p , q ) ) : d τ = 4 , d σ = 6 } ,

Ξ 5,5 = { τ σ E ( Γ ( p , q ) ) : d τ = 5 , d σ = 5 } ,

Ξ 5,6 = { τ σ E ( Γ ( p , q ) ) : d τ = 5 , d σ = 6 } .

Note that E ( Γ ( p , q ) ) = Ξ 2,2 Ξ 2,4 Ξ 3,3 Ξ 3,4 Ξ 3,5 Ξ 3,6 Ξ 4,4 Ξ 4,5 Ξ 4,6 Ξ 5,5 Ξ 5,6 . The number of edges incident to the two vertices of degree 2 is q + 2 , so | Ξ 2,2 | = q + 2 . The number of edges incident to one vertex of degree 3 and the other vertex of degree 4 is 2 ( 2 p + q 2 ) . Therefore, | Ξ 2,4 | = 2 ( 2 p + q 2 ) . The number of edges incident to the two vertices of degree 3 is q + 2 , so | Ξ 3,3 | = q + 2 . The number of edges incident to one vertex of degree 3 and the other vertices of degrees 4, 5, and 6 are 2 ( 2 p + q 2 ) , 4 p , 2 ( 2 p + q ) , respectively. Therefore, | Ξ 3,4 | = 2 ( 2 p + q 2 ) , | Ξ 3,5 | = 4 p , and | Ξ 3,6 | = 2 ( 2 p + q ) . The number of edges incident to the two vertices of degree 4 is q 1 , so | Ξ 4,4 | = q 1 . The number of edges incident to one vertex of degree 4 and other vertices of degrees 5 and 6 are 2 ( 2 p + q 2 ) , 2 ( 2 p + q 2 ) , respectively. Therefore, | Ξ 4,5 | = 2 ( 2 p + q 2 ) and | Ξ 4,6 | = 2 ( 2 p + q 2 ) . The number of edges incident to one vertex of degree 5 and the other vertex of degree 6 is 24 pq 32 p 14 q + 24 , so | Ξ 5,6 | = 24 pq 32 p 14 q + 24 . The number of edges incident to the two vertices of degree 5 is 42 pq 15 p 5 q + 6 ( | Ξ 2,2 | + | Ξ 2,4 | + | Ξ 3,3 | + | Ξ 3,4 | + | Ξ 3,5 | + | Ξ 3,6 | + | Ξ 4,4 | + | Ξ 4,5 | + | Ξ 4,6 | + | Ξ 5,6 ) = 18 pq 7 p 4 q 5 , so | Ξ 5,5 | = 18 pq 7 p 4 q 5 . Hence,

T ( Γ ( p , q ) ) = τ σ E ( Γ ( p , q ) ) ψ ˆ ( d τ , d σ )

= τ σ Ξ 2,2 ψ ˆ ( 2,2 ) + τ σ Ξ 2,4 ψ ˆ ( 2,4 ) + τ σ Ξ 3,3 ψ ˆ ( 3,3 ) + τ σ Ξ 3,4 ψ ˆ ( 3,4 ) + τ σ Ξ 3,5 ψ ˆ ( 3,5 ) + τ σ Ξ 3,6 ψ ˆ ( 3,6 ) + τ σ Ξ 4,4 ψ ˆ ( 4,4 ) + τ σ Ξ 4,5 ψ ˆ ( 4,5 ) + τ σ Ξ 4,6 ψ ˆ ( 4,6 ) + τ σ Ξ 5,5 ψ ˆ ( 5,5 ) + τ σ Ξ 5,6 ψ ˆ ( 5,6 )

= ( q + 2 ) ψ ˆ ( 2,2 ) + ( 4 p + 2 q 4 ) ψ ˆ ( 2,4 ) + ( q + 2 ) ψ ˆ ( 3,3 ) + ( 4 p + 2 q 4 ) ψ ˆ ( 3,4 ) + ( 4 p ) ψ ˆ ( 3,5 ) + ( 4 p + 2 q ) ψ ˆ ( 3,6 ) + ( q 1 ) ψ ˆ ( 4,4 ) + ( 4 p + 2 q 4 ) ) ψ ˆ ( 4,5 ) + ( 4 p + 2 q 4 ) ψ ˆ ( 4,6 ) + ( 18 pq 7 p 4 q 5 ) ψ ˆ ( 5,5 ) + ( 24 pq 32 p 14 q + 24 ) ψ ˆ ( 5,6 )

= pq ( 18 ψ ˆ ( 5,5 ) + 24 ψ ˆ ( 5,6 ) ) + p ( 4 ψ ˆ ( 2,4 ) + 4 ψ ˆ ( 3,4 ) + 4 ψ ˆ ( 3,5 ) + 4 ψ ˆ ( 3,6 ) + 4 ψ ˆ ( 4,5 ) + 4 ψ ˆ ( 4,6 ) 7 ψ ˆ ( 5,5 ) 32 ψ ˆ ( 5,6 ) ) + q ( ψ ˆ ( 2,2 ) + 2 ψ ˆ ( 2,4 ) + ψ ˆ ( 3,3 ) + 2 ψ ˆ ( 3,4 ) + 2 ψ ˆ ( 3,6 ) + ψ ˆ ( 4,4 ) + 2 ψ ˆ ( 4,5 ) + 2 ψ ˆ ( 4,6 ) 4 ψ ˆ ( 5,5 ) 14 ψ ˆ ( 5,6 ) ) + 2 ψ ˆ ( 2,2 ) 4 ψ ˆ ( 2,4 ) + 2 ψ ˆ ( 3,3 ) 4 ψ ˆ ( 3,4 ) ψ ˆ ( 4,4 ) 4 ψ ˆ ( 4,5 ) 4 ψ ˆ ( 4,6 ) 5 ψ ˆ ( 5,5 ) + 24 ψ ˆ ( 5,6 ) .

In the following theorems, we determine the degree-based topological indices of α -sheet of boron clusters.

Theorem 3.1

Let Γ ( p , q ) be a α -sheet of boron clusters. Then, the general Randić index R α of Γ ( p , q ) is

R α ( Γ ( p , q ) ) = pq ( 18 ( 25 ) α + 24 ( 30 ) α ) + p ( 4 ( 8 ) α + 4 ( 12 ) α + 4 ( 15 ) α + 4 ( 18 ) α + 4 ( 20 ) α + 4 ( 24 ) α 7 ( 25 ) α 32 ( 30 ) α ) + q ( ( 4 ) α + 2 ( 8 ) α + ( 9 ) α + 2 ( 12 ) α + 2 ( 18 ) α + ( 16 ) α + 2 ( 20 ) α + 2 ( 24 ) α 4 ( 25 ) α 14 ( 30 ) α ) + 2 ( 4 ) α 4 ( 8 ) α + 2 ( 9 ) α 4 ( 12 ) α ( 16 ) α 4 ( 20 ) α 4 ( 24 ) α 5 ( 25 ) α + 24 ( 30 ) α .

The Randić index is

R 1 2 ( Γ ( p , q ) ) = ( 7.9818 ) pq ( 0.9871 ) p + ( 0.3387 ) q + 0.5187 ,

the second Zagreb index is

R 1 ( Γ ( p , q ) ) = 1,170 pq 747 p 327 q + 349 ,

the second modified Zagreb index is

R 1 ( Γ ( p , q ) ) = ( 1.52 ) pq + ( 0.34222 ) p + ( 0.50806 ) q + 0.059722 ,

the general sum-connectivity index χ α of Γ ( p , q ) is

χ α ( Γ ( p , q ) ) = pq ( 18 ( 10 ) α + 24 ( 11 ) α ) + p ( 4 ( 6 ) α + 4 ( 7 ) α + 4 ( 8 ) α + 4 ( 9 ) α + 4 ( 9 ) α + 4 ( 10 ) α 7 ( 10 ) α 32 ( 11 ) α ) + q ( ( 4 ) α + 2 ( 6 ) α + ( 6 ) α + 2 ( 7 ) α + 2 ( 9 ) α + ( 8 ) α + 2 ( 9 ) α + 2 ( 10 ) α 4 ( 10 ) α 14 ( 11 ) α ) + 2 ( 4 ) α 4 ( 6 ) α + 2 ( 6 ) α 4 ( 7 ) α ( 8 ) α 4 ( 9 ) α 4 ( 10 ) α 5 ( 10 ) α + 24 ( 11 ) α ,

the sum-connectivity index is

χ 1 2 ( Γ ( p , q ) ) = ( 12.928 ) pq ( 3.3712 ) p ( 0.6859 ) q + 1.3749 ,

the first Zagreb index is

χ 1 ( Γ ( p , q ) ) = 444 pq 226 p 94 q + 98 ,

and the hyper-Zagreb index is

χ 2 ( Γ ( p , q ) ) = 4,704 pq 2,928 p 1,284 q + 1,380 .

Proof

For the general Randić index R α of Γ ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = ( d τ d σ ) α . Therefore, ψ ˆ ( 2,2 ) = ( 4 ) α , ψ ˆ ( 2,4 ) = ( 8 ) α , ψ ˆ ( 3,3 ) = ( 9 ) α , ψ ˆ ( 3,4 ) = ( 12 ) α , ψ ˆ ( 3,5 ) = ( 15 ) α , ψ ˆ ( 3,6 ) = ( 18 ) α , ψ ˆ ( 4,4 ) = ( 16 ) α , ψ ˆ ( 4,5 ) = ( 20 ) α , ψ ˆ ( 4,6 ) = ( 24 ) α , ψ ˆ ( 5,5 ) = ( 25 ) α , and ψ ˆ ( 5,6 ) = ( 30 ) α . Thus, by Lemma 2.1,□

R α ( Γ ( p , q ) ) = pq ( 18 ψ ˆ ( 5,5 ) + 24 ψ ˆ ( 5,6 ) ) + p ( 4 ψ ˆ ( 2,4 ) + 4 ψ ˆ ( 3,4 ) + 4 ψ ˆ ( 3,5 ) + 4 ψ ˆ ( 3,6 ) + 4 ψ ˆ ( 4,5 ) + 4 ψ ˆ ( 4,6 ) 7 ψ ˆ ( 5,5 ) 32 ψ ˆ ( 5,6 ) ) q ( ψ ˆ ( 2,2 ) + 2 ψ ˆ ( 2,4 ) + ψ ˆ ( 3,3 ) + 2 ψ ˆ ( 3,4 ) + 2 ψ ˆ ( 3,6 ) + ψ ˆ ( 4,4 ) + 2 ψ ˆ ( 4,5 ) + 2 ψ ˆ ( 4,6 ) 4 ψ ˆ ( 5,5 ) 14 ψ ˆ ( 5,6 ) ) + 2 ψ ˆ ( 2,2 ) 4 ψ ˆ ( 2,4 ) + 2 ψ ˆ ( 3,3 ) 4 ψ ˆ ( 3,4 ) ψ ˆ ( 4,4 ) 4 ψ ˆ ( 4,5 ) 4 ψ ˆ ( 4,6 ) 5 ψ ˆ ( 5,5 ) + 24 ψ ˆ ( 5,6 )

= pq ( 18 ( 25 ) α + 24 ( 30 ) α ) + p ( 4 ( 8 ) α + 4 ( 12 ) α + 4 ( 15 ) α + 4 ( 18 ) α + 4 ( 20 ) α + 4 ( 24 ) α 7 ( 25 ) α 32 ( 30 ) α ) + q ( ( 4 ) α + 2 ( 8 ) α + ( 9 ) α + 2 ( 12 ) α + 2 ( 18 ) α + ( 16 ) α + 2 ( 20 ) α + 2 ( 24 ) α 4 ( 25 ) α 14 ( 30 ) α ) + 2 ( 4 ) α 4 ( 8 ) α + 2 ( 9 ) α 4 ( 12 ) α ( 16 ) α 4 ( 20 ) α 4 ( 24 ) α 5 ( 25 ) α + 24 ( 30 ) α .

If α = 1 2 , then we obtain the Randić index

R 1 2 ( Γ ( p , q ) ) = 18 5 + 4 30 5 pq + 5 2 3 + 2 3 3 + 4 15 15 + 2 5 5 + 6 3 7 5 16 30 15 p + 17 60 + 5 2 6 + 3 3 + 5 5 + 6 6 7 30 15 q + 5 12 2 2 3 3 2 5 5 6 3 + 4 30 5 = ( 7.9818 ) pq ( 0.9871 ) p + ( 0.3387 ) q + 0.5187 .

If α = 1 , then we obtain the second Zagreb index

R 1 ( Γ ( p , q ) ) = 1,170 pq 747 p 327 q + 349 .

If α = 1 , then we obtain the second modified Zagreb index

R 1 ( Γ ( p , q ) ) = 38 25 pq + 77 225 p + 1,829 3,600 q + 43 720 = ( 1.52 ) pq + ( 0.34222 ) p + ( 0.50806 ) q + 0.059722 .

For the general sum-connectivity index χ α of Γ ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = ( d τ + d σ ) α . Therefore, ψ ˆ ( 2,2 ) = ( 4 ) α , ψ ˆ ( 2,4 ) = ( 6 ) α , ψ ˆ ( 3,3 ) = ( 6 ) α , ψ ˆ ( 3,4 ) = ( 7 ) α , ψ ˆ ( 3,5 ) = ( 8 ) α , ψ ˆ ( 3,6 ) = ( 9 ) α , ψ ˆ ( 4,4 ) = ( 8 ) α , ψ ˆ ( 4,5 ) = ( 9 ) α , ψ ˆ ( 4,6 ) = ( 10 ) α , ψ ˆ ( 5,5 ) = ( 10 ) α , and ψ ˆ ( 5,6 ) = ( 11 ) α . Thus, by Lemma 2.1,

χ α ( Γ ( p , q ) ) = pq ( 18 ψ ˆ ( 5,5 ) + 24 ψ ˆ ( 5,6 ) ) + p ( 4 ψ ˆ ( 2,4 ) + 4 ψ ˆ ( 3,4 ) + 4 ψ ˆ ( 3,5 ) + 4 ψ ˆ ( 3,6 ) + 4 ψ ˆ ( 4,5 ) + 4 ψ ˆ ( 4,6 ) 7 ψ ˆ ( 5,5 ) 32 ψ ˆ ( 5,6 ) ) + q ( ψ ˆ ( 2,2 ) + 2 ψ ˆ ( 2,4 ) + ψ ˆ ( 3,3 ) + 2 ψ ˆ ( 3,4 ) + 2 ψ ˆ ( 3,6 ) + ψ ˆ ( 4,4 ) + 2 ψ ˆ ( 4,5 ) + 2 ψ ˆ ( 4,6 ) 4 ψ ˆ ( 5,5 ) 14 ψ ˆ ( 5,6 ) ) + 2 ψ ˆ ( 2,2 ) 4 ψ ˆ ( 2,4 ) + 2 ψ ˆ ( 3,3 ) 4 ψ ˆ ( 3,4 ) ψ ˆ ( 4,4 ) 4 ψ ˆ ( 4,5 ) 4 ψ ˆ ( 4,6 ) 5 ψ ˆ ( 5,5 ) + 24 ψ ˆ ( 5,6 )

= pq ( 18 ( 10 ) α + 24 ( 11 ) α ) + p ( 4 ( 6 ) α + 4 ( 7 ) α + 4 ( 8 ) α + 4 ( 9 ) α + 4 ( 9 ) α + 4 ( 10 ) α 7 ( 10 ) α 32 ( 11 ) α ) + q ( ( 4 ) α + 2 ( 6 ) α + ( 6 ) α + 2 ( 7 ) α + 2 ( 9 ) α + ( 8 ) α + 2 ( 9 ) α + 2 ( 10 ) α 4 ( 10 ) α 14 ( 11 ) α ) + 2 ( 4 ) α 4 ( 6 ) α + 2 ( 6 ) α 4 ( 7 ) α ( 8 ) α 4 ( 9 ) α 4 ( 10 ) α 5 ( 10 ) α + 24 ( 11 ) α .

If α = 1 2 , then we obtain the sum-connectivity index

χ 1 2 ( Γ ( p , q ) ) = 9 10 5 + 24 11 11 pq + 2 6 3 + 4 7 7 + 2 + 8 3 3 10 10 32 11 11 p + 11 6 + 6 2 + 2 7 7 + 2 4 10 5 14 11 11 q 1 3 6 3 4 7 7 2 4 9 10 10 + 24 11 11 = ( 12.928 ) pq ( 3.3712 ) p ( 0.6859 ) q + 1.3749 .

If α = 1 , then we obtain the first Zagreb index

χ 1 ( Γ ( p , q ) ) = 444 pq 226 p 94 q + 98 .

If α = 2 , then we obtain a hyper-Zagreb index

χ 2 ( Γ ( p , q ) ) = 4,704 pq 2,928 p 1,284 q + 1,380 .

Theorem 3.2

Let Γ ( p , q ) be a α -sheet of boron clusters. Then, the geometric-arithmetic index GA of Γ ( p , q ) is

GA ( Γ ( p , q ) ) = ( 41.9 ) pq ( 15.598 ) p ( 5.244 ) q + 6.275 ,

the atom-bond connectivity index ABC of Γ ( p , q ) is

ABC ( Γ ( p , q ) ) = ( 23.327 ) pq ( 6.376 ) p ( 1.6544 ) q + 2.365 ,

the augmented Zagreb index AZI of Γ ( p , q ) is

AZI ( Γ ( p , q ) ) = ( 1,438.2 ) pq ( 979.71 ) p ( 423.93 ) q + 467.53 ,

the harmonic index H of Γ ( p , q ) is

H ( Γ ( p , q ) ) = ( 7.9636 ) pq ( 1.1642 ) p + ( 0.26486 ) q + 0.61522 ,

and the symmetric division degree index SDD of Γ ( p , q ) is

SDD ( Γ ( p , q ) ) = ( 84.8 ) pq ( 24.8 ) p ( 7.8667 ) q + 9.6 .

Proof

For the geometric-arithmetic index GA of Γ ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = 2 d τ d σ d τ + d σ . Therefore, ψ ˆ ( 2,2 ) = 1 , ψ ˆ ( 2,4 ) = 2 8 6 , ψ ˆ ( 3,3 ) = 1 , ψ ˆ ( 3,4 ) = 2 12 7 , ψ ˆ ( 3,5 ) = 2 15 8 , ψ ˆ ( 3,6 ) = 2 18 9 , ψ ˆ ( 4,4 ) = 1 , ψ ˆ ( 4,5 ) = 2 20 9 , ψ ˆ ( 4,6 ) = 2 24 10 , ψ ˆ ( 5,5 ) = 1 , and ψ ˆ ( 5,6 ) = 2 30 11 . Thus, by Lemma 2.1,□

GA ( Γ ( p , q ) ) = 18 + 48 30 11 pq + 16 2 3 + 16 3 7 + 15 + 16 5 9 + 8 6 5 7 64 30 11 p + 1 + 8 2 3 + 8 3 7 + 8 5 9 + 4 6 5 28 30 11 q 2 8 2 3 16 3 7 16 5 9 8 6 5 + 48 30 11 = ( 41.9 ) pq ( 15.598 ) p ( 5.244 ) q + 6.275 .

For the atom-bond connectivity index ABC of Γ ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ + d σ 2 d τ d σ . So ψ ˆ ( 2,2 ) = 1 2 , ψ ˆ ( 2,4 ) = 4 8 , ψ ˆ ( 3,3 ) = 4 9 , ψ ˆ ( 3,4 ) = 5 12 , ψ ˆ ( 3,5 ) = 6 15 , ψ ˆ ( 3,6 ) = 7 18 , ψ ˆ ( 4,4 ) = 6 16 , ψ ˆ ( 4,5 ) = 7 20 , ψ ˆ ( 4,6 ) = 8 24 , ψ ˆ ( 5,5 ) = 8 25 and ψ ˆ ( 5,6 ) = 9 30 . Thus, by Lemma 2.1,

ABC ( Γ ( p , q ) ) = 36 2 5 + 12 30 5 pq + 4 2 5 + 2 15 3 + 4 10 5 + 2 14 3 + 2 35 5 + 4 3 3 16 30 5 p + 2 10 + 2 3 + 15 3 + 14 3 + 6 4 + 35 5 + 2 3 3 7 30 5 q 3 2 + 4 3 2 15 3 6 4 2 35 5 4 3 3 + 12 30 5 = ( 23.327 ) pq ( 6.376 ) p ( 1.6544 ) q + 2.365 .

For the augmented Zagreb index AZI of Γ ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ d σ d τ + d σ 2 3 . Therefore, ψ ˆ ( 3,3 ) = 729 64 , ψ ˆ ( 3,4 ) = 1,728 125 , ψ ˆ ( 3,5 ) = 3,375 216 , ψ ˆ ( 3,6 ) = 5,832 343 , ψ ˆ ( 4,4 ) = 4,096 216 , ψ ˆ ( 4,5 ) = 8,000 343 , ψ ˆ ( 4,6 ) = 13,824 512 , ψ ˆ ( 5,5 ) = 15,625 512 , and ψ ˆ ( 5,6 ) = 27,000 729 . Thus, by Lemma 2.1,

AZI ( Γ ( p , q ) ) = 3,313,625 2,304 pq 82,953,675,713 84,672,000 p 2,991,279,587 7,056,000 q + 277,106,204,491 592,704,000 = ( 1,438.2 ) pq ( 979.71 ) p ( 423.93 ) q + 467.53 .

For the harmonic index H of Γ ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = 2 d τ + d σ . Therefore, ψ ˆ ( 2,2 ) = 1 2 , ψ ˆ ( 2,4 ) = 2 6 , ψ ˆ ( 3,3 ) = 2 6 , ψ ˆ ( 3,4 ) = 2 7 , ψ ˆ ( 3,5 ) = 2 8 , ψ ˆ ( 3,6 ) = 2 9 , ψ ˆ ( 4,4 ) = 2 8 , ψ ˆ ( 4,5 ) = 2 9 , ψ ˆ ( 4,6 ) = 2 10 , ψ ˆ ( 5,5 ) = 2 10 , and ψ ˆ ( 5,6 ) = 2 11 . Thus, by Lemma 2.1,

H ( Γ ( p , q ) ) = 438 55 pq 4,034 3,465 p + 3,671 13,860 q + 8,527 13,860 = ( 7.9636 ) pq ( 1.1642 ) p + ( 0.26486 ) q + 0.61522 .

For the symmetric division degree index SDD of Γ ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ 2 + d σ 2 d τ d σ . Therefore, ψ ˆ ( 2,2 ) = 8 4 , ψ ˆ ( 2,4 ) = 20 8 , ψ ˆ ( 3,3 ) = 18 9 , ψ ˆ ( 3,4 ) = 25 12 , ψ ˆ ( 3,5 ) = 34 15 , ψ ˆ ( 3,6 ) = 45 18 , ψ ˆ ( 4,4 ) = 32 16 , ψ ˆ ( 4,5 ) = 41 20 , ψ ˆ ( 4,6 ) = 52 24 , ψ ˆ ( 5,5 ) = 50 25 , and ψ ˆ ( 5,6 ) = 61 30 . Thus, by Lemma 2.1,

SDD ( Γ ( p , q ) ) = 424 5 pq 124 5 p 118 15 q + 48 5 = ( 84.8 ) pq ( 24.8 ) p ( 7.8667 ) q + 9.6 .

Theorem 3.3

Let Γ ( p , q ) be a α -sheet of boron clusters. Then, the Albertson index A of Γ ( p , q ) is

A ( Γ ( p , q ) ) = 24 pq + 12 p + 4 q ,

the first redefined Zagreb index ReZ G 1 of Γ ( p , q ) is

ReZ G 1 ( Γ ( p , q ) ) = 16 pq ( 1.6 ) p + ( 0.83333 ) q + 0.83333 ,

the second redefined Zagreb index Re Z G 2 of Γ ( p , q ) is

ReZ G 2 ( Γ ( p , q ) ) = ( 110.45 ) pq ( 58.593 ) p ( 24.342 ) q + 25.275 ,

the third redefined Zagreb index ReZ G 3 of Γ ( p , q ) is

ReZ G 3 ( Γ ( p , q ) ) = 1,170 pq 747 p 327 q + 349 ,

and the variation of the Randić index R of Γ ( p , q ) is

R ( Γ ( p , q ) ) = 38 5 pq 9 5 p + q 60 + 19 20 .

Proof

For the Albertson index A of Γ ( p , q ) , we obtain ϕ ( d τ , d σ ) = | d τ d σ | . Therefore, ψ ˆ ( 2,2 ) = ψ ˆ ( 3,3 ) = ψ ˆ ( 4,4 ) = ψ ˆ ( 5,5 ) = 0 , ψ ˆ ( 3,4 ) = ψ ˆ ( 4,5 ) = ψ ˆ ( 5,6 ) = 1 , ψ ˆ ( 2,4 ) = ψ ˆ ( 3,5 ) = ψ ˆ ( 4,6 ) = 2 , and ψ ˆ ( 3,6 ) = 3 . Thus, by Lemma 2.1,□

A ( Γ ( p , q ) ) = 24 pq + 12 p + 4 q .

For the first redefined Zagreb index Re Z G 1 of Γ ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ + d σ d τ d σ . Therefore, ψ ˆ ( 2,2 ) = 1 , ψ ˆ ( 2,4 ) = 6 8 , ψ ˆ ( 3,3 ) = 6 9 , ψ ˆ ( 3,4 ) = 7 12 , ψ ˆ ( 3,5 ) = 8 15 , ψ ˆ ( 3,6 ) = 9 18 , ψ ˆ ( 4,4 ) = 8 16 , ψ ˆ ( 4,5 ) = 9 20 , ψ ˆ ( 4,6 ) = 10 24 , ψ ˆ ( 5,5 ) = 10 25 , and ψ ˆ ( 5,6 ) = 11 30 . Thus, by Lemma 2.1,

ReZ G 1 ( Γ ( p , q ) ) = 16 pq 8 5 p + 5 6 q + 5 6 = 16 pq ( 1.6 ) p + ( 0.83333 ) q + 0.83333 .

For the second redefined Zagreb index ReZ G 2 of Γ ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ d σ d τ + d σ . Therefore, ψ ˆ ( 2,2 ) = 1 , ψ ˆ ( 2,4 ) = 8 6 , ψ ˆ ( 3,3 ) = 9 6 , ψ ˆ ( 3,4 ) = 12 7 , ψ ˆ ( 3,5 ) = 15 8 , ψ ˆ ( 3,6 ) = 18 9 , ψ ˆ ( 4,4 ) = 16 8 , ψ ˆ ( 4,5 ) = 20 9 , ψ ˆ ( 4,6 ) = 24 10 , ψ ˆ ( 5,5 ) = 25 10 , and ψ ˆ ( 5,6 ) = 30 11 . Thus, by Lemma 2.1,

ReZ G 2 ( Γ ( p , q ) ) = 1,215 11 pq 203,026 3,465 p 168,691 6,930 q + 175,157 6,930 = ( 110.45 ) pq ( 58.593 ) p ( 24.342 ) q + 25.275 .

For the third redefined Zagreb index ReZ G 3 of Γ ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = d τ d σ ( d τ + d σ ) . Therefore, ψ ˆ ( 2,2 ) = 16 , ψ ˆ ( 2,4 ) = 48 , ψ ˆ ( 3,3 ) = 54 , ψ ˆ ( 3,4 ) = 84 , ψ ˆ ( 3,5 ) = 120 , ψ ˆ ( 3,6 ) = 162 , ψ ˆ ( 4,4 ) = 128 , ψ ˆ ( 4,5 ) = 180 , ψ ˆ ( 4,6 ) = 240 , ψ ˆ ( 5,5 ) = 250 , and ψ ˆ ( 5,6 ) = 330 . Thus, by Lemma 2.1,

ReZ G 3 ( Γ ( p , q ) ) = 1,170 pq 747 p 327 q + 349 .

For the variation of the Randić index R of Γ ( p , q ) , we obtain ψ ˆ ( d τ , d σ ) = 1 max { d τ , d σ } . So ψ ˆ ( 2,2 ) = 1 2 , ψ ˆ ( 2,4 ) = 1 4 , ψ ˆ ( 3,3 ) = 1 3 , ψ ˆ ( 3,4 ) = 1 4 , ψ ˆ ( 3,5 ) = 1 5 , ψ ˆ ( 3,6 ) = 1 6 , ψ ˆ ( 4,4 ) = 1 4 , ψ ˆ ( 4,5 ) = 1 5 , ψ ˆ ( 4,6 ) = 1 6 , ψ ˆ ( 5,5 ) = 1 5 , and ψ ˆ ( 5,6 ) = 1 6 . Thus, by Lemma 2.1,

R ( Γ ( p , q ) ) = 38 5 pq 9 5 p + q 60 + 19 20 = ( 7.6 ) pq ( 1.8 ) p + ( 0.016667 ) q + 0.95 .

4 Conclusion

In this article, we discussed some novel topological descriptors found in algebraic formulations for the boron cluster or borophene sheets. At the start of the methodology, we defined the graph of boron clusters or borophene sheets in some lemmas for the algebraic properties like how topological indices worked. Later, on behalf of these lemmas, we introduced Randić indices for different parameters such as alpha and geometric arithmetic, atom-bond connectivity, augmented Zagreb, Albertson, and redefined Zagreb indices, which were measured for the borophene sheets.

In this study, we explored the degree-based topological properties of borophene sheets, a novel two-dimensional material with remarkable electrical, mechanical, and thermal properties. By employing graph-theoretical approaches, we derived algebraic formulations for various topological indices, including the Randić index, geometric arithmetic index, atom-bond connectivity index, augmented Zagreb index, Albertson index, and redefined Zagreb indices. These indices serve as powerful tools for understanding the structural and chemical properties of borophene sheets, offering insights into their atomic connectivity and bonding patterns.

Our work began by modelling borophene sheets as molecular graphs, where atoms are represented as nodes and bonds as edges. Through this representation, we established several lemmas and mathematical frameworks to compute topological indices for different configurations of borophene sheets. The results highlight the significance of these indices in predicting the physical and chemical behaviours of borophene, which is crucial for its potential applications in electronics, catalysis, and energy storage.

The findings of this study contribute to the growing body of knowledge on borophene and its topological properties. By providing explicit algebraic expressions for these indices, we have laid the groundwork for further computational and experimental studies. This research not only advances the theoretical understanding of borophene but also paves the way for its practical utilisation in nanotechnology and materials science.

5 Limitations of the work

While this study provides valuable insights into the topological properties of borophene sheets, it is important to acknowledge its limitations in simplified models: The molecular graph representation of borophene sheets assumes idealized structures, which may not fully capture the complexities and defects present in real-world materials. We focus on degree-based indices and experimental validation.

6 Future directions

To build upon this work, future research could focus on the following areas: incorporation of defects and heteroatoms: Real borophene sheets often contain defects or heteroatoms, which can significantly alter their properties. Extending the current framework to account for these factors would enhance its practical relevance. Exploration of other topological indices: Investigating distance-based, eigenvalue-based, or entropy-based indices could provide a more comprehensive understanding of borophene’s properties.



Acknowledgments

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through the Large Research Project under Grant Number RGP2/339/45.

  1. Funding information: The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through the Large Research Project under Grant Number RGP2/339/45.

  2. Author contributions: Conceptualization: Ali Al Khabyah, Ali Ahmad; Methodology: Ali Al Khabyah, Ali Ahmad; Software: Muhammad Azeem, Ali N. A. Koam; Validation: Muhammad Azeem, Ali N. A. Koam; Verification: Ali N. A. Koam; Formal analysis: Ali Ahmad, Muhammad Azeem; Investigation: Ali Al Khabyah, Ali N. A. Koam; Resources: Ali Al Khabyah; Data Curation: Ali Ahmad, Muhammad Azeem; Writing – Original Draft: Ali Al Khabyah, Ali Ahmad, Ali N. A. Koam; Writing – Review & Editing: Ali Al Khabyah, Ali Ahmad, Muhammad Azeem; Visualization: Ali N. A. Koam; Supervision: Ali Ahmad; Project administration: Ali N. A. Koam; Funding acquisition: Ali Al Khabyah.

  3. Conflict of interest: Authors state no conflict of interest.

  4. Data availability statement: All data generated or analysed during this study are included in this published article.

References

[1] Feng B, Zhang J, Zhong Q, Wenbin L, Shuai L, Hui L, et al. Experimental realization of two-dimensional boron sheets. Nat Chem. 2016;8:563–8. 10.1038/nchem.2491.Search in Google Scholar PubMed

[2] Shabbir A, Azeem M. On the partition dimension of tri-hexagonal alpha-boron nanotube. IEEE Acc. Apr 2021;9:55644–53. 10.1109/ACCESS.2021.3071716.Search in Google Scholar

[3] Zhang Z, Evgeni S, Penev BI. Two-dimensional boron: structures, properties and applications. Chem Soc Rev. 2017;46:6746–63.10.1039/C7CS00261KSearch in Google Scholar

[4] Azeem M, Nadeem MF. Metric-based resolvability of polycyclic aromatic hydrocarbons. Eur Phys J Plus. Jan 2021;136(395). 10.1140/epjp/s13360-021-01399-8.Search in Google Scholar

[5] Xiaojun W, Jun D, Yu Z, Zhiwen Z, Jinlong Y, Xiao Cheng Z. Two-dimensional boron monolayer sheets. ACS Nano. 2012;6(8):7443–53. org/10.1021/nn302696.Search in Google Scholar

[6] Liu Y, Tai G, Hou C, Wu Z, Liang X. Chemical vapor deposition growth of few-layer beta12-borophane on copper foils toward broadband photodetection. ACS Appl Mater Interfaces. 2023;15(11):14566–74. 10.1021/acsami.2c23234.Search in Google Scholar PubMed

[7] Cheng Z, Zhang X, Zhang H, Liu H, Yu X, Dai X, et al. Porous-induced performance enhancement of flat boron sheets for lithium-ion batteries. J Phys Chem C. 2022;126(51):21542–49. 10.1021/acs.jpcc.2c06346.Search in Google Scholar

[8] Xiong Z, Xiao Y, Shen C. Screening of the transition metal single atom anchored on alpha-borophene catalysts as a feasible strategy for electrosynthesis of urea. Chem Mater. 2022;34(21):9402–13. 10.1021/acs.chemmater.2c01572.Search in Google Scholar

[9] Kang Y, Ma X, Fu J, Yang K, Wang Z, Li H, et al. Substrate-mediated borophane polymorphs through hydrogenation of two-dimensional boron sheets. J Phys Chem Lett. 2022;13(43):102220–9. 10.1021/acs.jpclett.2c02417.Search in Google Scholar PubMed

[10] Abdi Y, Mazaheri A, Hajibaba S, Darbari S, Rezvani SJ, Cicco AD, et al. A two-dimensional borophene supercapacitor. ACS Mater Lett. 2022;4(10):1929–36. 10.1021/acsmaterialslett.2c00475.Search in Google Scholar

[11] Chen K, Guo H, Zhang J, Wang L, Wu M. 2D/2D boron/g-C3N4 nanosheet heterojunction boosts photocatalytic hydrogen evolution performance. ACS Appl Energy Mater. 2022;5(9):10657–66. 10.1021/acsaem.2c01370.Search in Google Scholar

[12] Radatovic B, Jadrisko V, Kamal S, Kralj M, Novko D, Vujicic N, et al. Macroscopic single-phase monolayer borophene on arbitrary substrates. ACS Appl Mater Interfaces. 2022;14(18):21727–37. 10.1021/acsami.2c03678.Search in Google Scholar PubMed

[13] Xu Y, Xuan X, Yang T, Zhang Z, Li SD, Guo W. Quasi-freestanding bilayer borophene on Ag(111). Nano Lett. 2022;22(8):3488–94. 10.1021/acs.nanolett.1c05022.Search in Google Scholar PubMed

[14] Li J, An Q, Liu L. A strong two-dimensional semiconductor l-B4C with high carrier mobility. J Phys Chem C. 2022;126(13):6036–46. 10.1021/acs.jpcc.2c00140.Search in Google Scholar

[15] Xu Y, Zhang P, Xuan X, Xue M, Zhang Z, Guo W, et al. Borophane polymorphs. J Phys Chem Lett. 2022;13(4):1107–13. 10.1021/acs.jpclett.1c03827.Search in Google Scholar PubMed

[16] Nadeem MF, Azeem M. The fault-tolerant beacon set of hexagonal mobius ladder network. Math Methods Appl Sci. Jan 2023;46(9):9887–901. 10.1002/mma.9091.Search in Google Scholar

[17] Hayat S, Khan S, Imran M. Quality testing of spectrum-based distance descriptors for polycyclic aromatic hydrocarbons with applications to carbon nanotubes and nanocones. Arab J Chem. 2021;14(3):102994.10.1016/j.arabjc.2021.102994Search in Google Scholar

[18] Hayat S, Khan S, Khan S, Imran M. Distance-based topological descriptors for measuring the pielectronic energy of benzenoid hydrocarbons with applications to carbon nanotubes. Math Methods Appl Sci. 2020. 10.1002/mma.6668.Search in Google Scholar

[19] Malik MYH, Hayat S, Khan S, Binyamin MA. Predictive potential of spectrum-based topological descriptors for measuring the pi-electronic energy of benzenoid hydrocarbons with applications to boron triangular. Math Methods Appl Sci. 2021. 10.1002/mma.7161.Search in Google Scholar

[20] Nadeem MF, Azeem M, Farman I. Comparative study of topological indices for capped and uncapped carbon nanotubes. Polycycl Aromatic Compd. 2020;42(7):4666–83. 10.1080/10406638.2021.1903952.Search in Google Scholar

[21] Nadeem MF, Azeem M, Siddiqui HMA. Comparative study of Zagreb indices for capped, semi-capped and uncapped carbon nanotubes. Polycycl Aromatic Compd. 2021;42(6):3545–62. 10.1080/10406638.2021.1890625.Search in Google Scholar

[22] Hakami KH, Ahmad A, Azeem M, Husain, Koam ANA. A study of two-dimensional coronene fractal structures with M-polynomials. Int J Quantum Chem. 2023;123(13):e27112. 10.1002/qua.27112.Search in Google Scholar

[23] Shanmukha MC, Lee S, Usha A, Shilpa KC, Azeem M. Structural descriptors of anthracene using topological coindices through CoM-polynomial. J Intell Fuzzy Syst. 2023;44(5):8425–36. 10.3233/JIFS-223947.Search in Google Scholar

[24] Bukhari S, Jamil MK, Azeem M, Swaray S. Patched network and its vertex-edge metric-based dimension. IEEE Acc. Jan 2023;11:4478–85. 10.1109/ACCESS.2023.3235398.Search in Google Scholar

[25] Javaid M, Zafar H, Zhu Q, Alanazi AM. Improved lower bound of LFMD with applications of prism-related networks. Math Probl Eng. 2021;2021:9950310.10.1155/2021/9950310Search in Google Scholar

[26] Kulli VR. Reverse zagreb and reverse hyper-Zagreb indices and their polynomials of rhombus silicate networks. Ann Pure Appl Mathematics. 2018;16(1):47–51.10.22457/apam.v16n1a6Search in Google Scholar

[27] Liu J-B, Raza Z, Javaid M. Zagreb connection numbers for cellular neural networks. Discret Dyn Nat Soc. 2020;2020:8038304.10.1155/2020/8038304Search in Google Scholar

[28] Ajmal M, Nazeer W, Munir M, Kang S, Kwun Y. Some algebraic polynomials and topological indices of generalized prism and toroidal polyhex networks. Symmetry. dec 2016;9(1):5.10.3390/sym9010005Search in Google Scholar

[29] Maji D, Ghorai G. Computing F-index, coindex and Zagreb polynomials of the kth generalized transformation graphs. Heliyon. 2020;6(12):e05781.10.1016/j.heliyon.2020.e05781Search in Google Scholar PubMed PubMed Central

[30] Balasubramanian K. TopoChemie-2020. A Fortran 95, 2020.Search in Google Scholar

[31] Huilgol MI, Sriram V, Balasubramanian K. Structure-activity relations for antiepileptic drugs through omega polynomials and topological indices. Mol Phys. 2022;120(3):e1987542. 10.1080/00268976.2021.1987542.Search in Google Scholar

[32] Hosoya H. On some counting polynomials in chemistry. Discret Appl Math. 1988;19(1–3):239–57.10.1016/0166-218X(88)90017-0Search in Google Scholar

[33] Deutsch E, Klavzar S. M-polynomial and degree based topological indices. Iran J Math Chem. 2015;6:93–102.Search in Google Scholar

[34] Ahmad A, Lopez SC. Distance-based topological polynomials associated with zero-divisor graphs. Math Probl Eng. 2021;2021:18.10.1155/2021/4959559Search in Google Scholar

[35] Javaid M, Jung CY. M-polynomials and topological indices of silicate and oxide networks. Int J Pure Appl Math. 2017;115(1):129–52.10.12732/ijpam.v115i1.11Search in Google Scholar

[36] Ahmad A, Hasni R, Elahi K, Asim MA. Polynomials of degree-based indices for swapped networks modeled by optical transpose interconnection system. IEEE Acc. 2020;8:214293–99.10.1109/ACCESS.2020.3039298Search in Google Scholar

[37] Munir M, Nazeer W, Nizami A, Rafique S, Kang S. Mpolynomials and topological indices of titania nanotubes. Symmetry. 2016;8(11):117.10.3390/sym8110117Search in Google Scholar

[38] Siddiqui MK, Imran M, Ahmad A. On zagreb indices, Zagreb polynomials of some nanostar dendrimers. Appl Math Comput. 2016;280:132–9.10.1016/j.amc.2016.01.041Search in Google Scholar

[39] Gao W, Younas M, Farooq A, Virk A, Nazeer W. Some reverse degree-based topological indices and polynomials of dendrimers. Mathematics. 2018;6(10):214.10.3390/math6100214Search in Google Scholar

[40] Noureen S, Ali A, Bhatti AA, Alanazi AM, Shang Y. Predicting enthalpy of formation of benzenoid hydrocarbons and ordering molecular trees using general multiplicative Zagreb indices. Heliyon. 2024;10(10):e30913.10.1016/j.heliyon.2024.e30913Search in Google Scholar PubMed PubMed Central

[41] Raza Z, Akhter S, Shang Y. Expected value of first Zagreb connection index in random cyclooctatetraene chain, random polyphenyls chain, and random chain network. Front Chem. 2023;10:1067874.10.3389/fchem.2022.1067874Search in Google Scholar PubMed PubMed Central

[42] Ismail R, Azeem M, Shang Y, Imran M, Ahmad A. A unified approach for extremal general exponential multiplicative zagreb indices. Axioms. 2023;12(7):675.10.3390/axioms12070675Search in Google Scholar

[43] Zhang Z, Yang Y, Gao G, Yakobson BI. Two-dimensional boron monolayers mediated by metal substrates. Angew Chem. 2015;127(44):13214–8.10.1002/ange.201505425Search in Google Scholar

[44] Abbas G, Ibrahim M, Ahmad A, Azeem M, Elahi K. M-Polynomials of tetra-cyano-benzene transition metal structure. Polycycl Aromatic Compd. 2021;43(1):471–81. 10.1080/10406638.2021.2019797.Search in Google Scholar

[45] Abbas G, Ibrahim M, Ahmad A, Azeem M, Elahi K. M-polynomials and associated topological indices of sodalite materials. Math Probl Eng. Oct. 2021;2021:5924409. 10.1155/2021/5924409.Search in Google Scholar

[46] Zuo X, Nadeem MF, Siddiqui MK, Azeem M. Edge weight based entropy of different topologies of carbon nanotubes. IEEE Access. 2021;9:102019–29. 10.1109/ACCESS.2021.3097905.Search in Google Scholar

[47] Nadeem MF, Imran M, Siddiqui HMA, Azeem M, Khalil A, Ali Y. Topological aspects of metal-organic structure with the help of underlying networks. Arab J Chem. 2021;14(6):103157. 10.1016/j.arabjc.2021.103157.Search in Google Scholar

[48] Raza H, Waheed M, Jamil MK, Azeem M. Structures devised by the generalizations of two graph operations and their topological descriptors. Main Group Met Chem. 2022;45(1):44–56. 10.1515/mgmc-2022-0006.Search in Google Scholar

[49] Ahmad A. Computing the Schultz polynomials and indices for ladder related graphs. Proyecciones (Antofagasta). 2019;38(5):1081–92. 10.22199/issn.0717-6279-2019-05-0070.Search in Google Scholar

[50] Cancan M, Hussain M, Ahmad H. Distance and eccentricity based polynomials and indices of m-level Wheel graph. Proyecciones (Antofagasta). 2020;39(4):869–85. 10.22199/issn.0717-6279-2020-04-0054.Search in Google Scholar

[51] Raza Z, Essa M, Sukaiti K. M-polynomial and degree based topological indices of some nanostructures. Symmetry. 2020;12(5):831. 10.3390/sym12050831.Search in Google Scholar

[52] Liu J-B, Younas M, Habib M, Yousaf M, Nazeer W. M-polynomials and degree-based topological indices of VC5C7[p,q] and HC5C7[p,q] nanotubes. IEEE Acc. 2019;7:41125–32. 10.1109/access.2019.2907667.Search in Google Scholar

[53] Irfan M, Rehman HU, Almusawa H, Rasheed S, Baloch IA. M-polynomials and topological indices for line graphs of chain silicate network and H-naphtalenic nanotubes. J Mathematics. 2021;2021:1–11. 10.1155/2021/5551825.Search in Google Scholar

[54] Riaz M, Gao W, Baig AQ. M-polynomials and degree-based topological indices of some families of convex polytopes. Open J Math Sci. 2018;2(1):18–28. 10.30538/oms2018.0014.Search in Google Scholar

[55] Li C-P, Zhonglin C, Munir M, Yasmin K, Liu J-B. M-polynomials and topological indices of linear chains of benzene, napthalene and anthracene. Math Biosci Eng. 2020;17(3):2384–98. 10.3934/mbe.2020127.Search in Google Scholar PubMed

[56] Baig MNJ, Jung CY, Ahmad N, Kang SM. On the M-polynomials and degree-based topological indices of an important class of graphs. J Discret Math Sci Cryptogr. 2019;22(7):1281–8. 10.1080/09720529.2019.1691327.Search in Google Scholar

Received: 2024-08-16
Accepted: 2025-02-20
Published Online: 2025-04-14

© 2025 the author(s), published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mgmc-2024-0017/html
Scroll to top button