New records and potential distribution of the Barbary ground squirrel (Atlantoxerus getulus) in arid ecosystems of Western Algeria
-
Abdenour Moussouni
, Badis Bakhouche, Imed Djemadi
, Feriel Benhafid , Kawther Abid , Mohamed Boussekine , Belkacem Aimen Boulaouad und Amina Saadi
Abstract
This study aimed to investigate the species distribution of the Barbary ground squirrel within Tindouf Cultural Park, an arid region where no prior occurrence records for this species existed. Additionally, we assessed the species’ potential range by modelling its bioclimatic niche. Our field trips conducted on 2023 to various habitats in the Tindouf cultural park have confirmed the presence of the Barbary ground squirrel in nine sites, primarily in rocky, mountainous areas with water sources. Vegetation in these areas is diverse, with a dominance of Acacia and Argan trees. The squirrels showed a preference for argan fruits. Using GBIF data, 2,133 geo-referenced observations were collected, showing an increase in occurrences from the 2000s. Due to the nature of the data collected (presence only) we used Maxent for modelling Barbary ground squirrel bioclimatic niche and distribution. The model used proved to be excellent, with an AUC value of 0.977. The Jackknife test identified the minimum temperature of the coldest month, the precipitation of the coldest quarter, and the average diurnal range as the main influencing variables on the presence of the Barbary ground squirrel. The predictive distribution map shows that the squirrel could potentially inhabit a larger area in Algeria than what is currently observed.
Acknowledgments
Many thanks to the entire team at the Tindouf Cultural Park, and especially to Haidas Hmida, who provided us with all the resources and support we needed to make this work a success.
-
Research ethics: Although our study involved fieldwork, no animal was captured, handled, or disturbed in any way. All data were collected through non-invasive visual observations, GPS recordings, and habitat description. No specimens were collected, and no physical interaction with animals occurred at any time. According to current Algerian legislation, this type of purely observational fieldwork on non-threatened species outside protected areas does not require formal ethical approval. Nonetheless, we fully adhere to the ethical principles of research involving wildlife.
-
Informed consent: Applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: All other authors state no conflict of interest.
-
Research funding: The Directorate-General for Scientific Research and Technology Development (DGRSDT).
-
Data availability: Not applicable.
References
Ahmim, M. (2019). Les mammifères sauvages d’Algérie. Répartition et biologie de la conservation. Les Editions du Net, Saint-Ouen-sur-Seine.Suche in Google Scholar
Ahmim, M., Boubaker, Z., Boussekine, M., Moussouni, A., and Moali, A. (2022). Note about the new distribution area of Atlantoxerus getulus Linnaeus, 1758 (Mammalia, Rodentia) in Algeria. Int. J. Zool. Anim. Biol. 5: 000412.10.23880/izab-16000412Suche in Google Scholar
Aulagnier, S., Gouat, P., and Thévenot, M. (2013). Atlantoxerus getulus Barbary ground squirell. In: Happold, D.C.D. (Ed.). Mammals of Africa. Volume III. Rodents, hares and rabbits. Bloomsbury Publishing, London, pp. 43–44.Suche in Google Scholar
Aulagnier, S., Thévenot, M., and Cuzin, F. (2017). Les mammifères d’Afrique du Nord: Maroc, Algérie, Tunisie, Libye, 2nd ed. Paris: Biotope éditions/Muséum national d’Histoire naturelle.Suche in Google Scholar
Aulagnier, S., Haffner, P., Mitchell-Jones, A.J., Moutou, F., and Zima, J. (2020). Mammifères d’Europe, d’Afrique du Nord et du Moyen-Orient. Delachaux et Niestlé, Paris.Suche in Google Scholar
Bagnouls, F. and Gaussen, H. (1953). Saison sèche et indice xérothermique. Bull. Soc. Hist. Nat. Toulouse 88: 193–239.Suche in Google Scholar
Barrett, G.W. and Peles, J.D. (1999). Landscape ecology of small mammals. Springer, New York.10.1007/978-0-387-21622-5Suche in Google Scholar
Baziz, B., Doumandji, S., Denys, C., and Khemici, M. (2002). Répartition en Algérie du Pachyure étrusque Suncus etruscus (Insectivora, Soricidae). Première observation dans le nord-est du Sahara, à Biskra. Mammalia 66: 133–137.Suche in Google Scholar
Bendjeddou, M.L., Bakhouche, B., and Bouslama, Z. (2014). A new locality for Tadarida teniotis (Rafinesque, 1814) (Mammalia, Chiroptera, Molossidae) in Algeria. Natura Rerum 3: 37–39.Suche in Google Scholar
Bendjeddou, M.L., Bouam, I., and Khelfaoui, F. (2020). First photographed record of the naked-rumped tomb bat, Taphozous nudiventris Cretzschmar, 1830 (Chiroptera: Emballonuridae), in the Grand Maghreb. Afr. J. Ecol. 58: 852–854, https://doi.org/10.1111/aje.12780.Suche in Google Scholar
Bennett, J.M., Sunday, J., Calosi, P., Villalobos, F., Martínez, B., Molina-Venegas, R., Araújo, M.B., Algar, A.C., Clusella-Trullas, S., Hawkins, B.A., et al.. (2021). The evolution of critical thermal limits of life on Earth. Nat. Commun. 12: 1198, https://doi.org/10.1038/s41467-021-21263-8.Suche in Google Scholar PubMed PubMed Central
Boulaouad, B.A., Ayyach, K., Harzallah, B., Berlkacem, M., Missoum, M., Hadj Aissa, D., Attouche, K., and De Smet, K. (2024). Rediscovery of the pale fox (Vulpes pallida Cretzschmar, 1827) in Algeria: first confirmed record in over fifty years and assessment of its current distribution. Zool. Ecol. 34: 140–143, https://doi.org/10.35513/21658005.2024.2.7.Suche in Google Scholar
Brahimi, M.F. and Belhamra, M. (2016). Diversité de la faune vertébrée du barrage Foum El Gherza (Biskra, Algérie). Courr. Savoir 21: 9–16.Suche in Google Scholar
Brahmi, K., Kechekhouche, E., Mostefaoui, O., Bebba, K., Hadjoudj, M., Doumandji, S., Baziz, B., and Aulagnier, S. (2010). Extralimital presence of small mammals in north-eastern Algeria. Mammalia 74: 105–108, https://doi.org/10.1515/mamm.2010.002.Suche in Google Scholar
Chaari, A. and Faucheux, M.J. (2012). L’Écureuil de Berbérie, Atlantoxerus getulus (Linnaeus 1758) (Rodentia: Sciuridae) au Sud-Ouest Marocain. Bull. Soc. Sci. Nat. Ouest Fr. 34: 200–208.Suche in Google Scholar
Costello, M.J., May, R.M., and Stork, N.E. (2013). Can we name Earth’s species before they go extinct? Science 339: 413–416, https://doi.org/10.1126/science.1230318.Suche in Google Scholar PubMed
Dragesco-Joffé, A. (1993). La vie sauvage au Sahara. Delachaux Niestlé, Paris.Suche in Google Scholar
Drouai, H., Nouidjem, Y., and Mimeche, F. (2020). New record of two rodent species from Khenchela Region (East of Algeria). J. Bioresour. Manag. 7: 9, https://doi.org/10.35691/JBM.0202.0155.Suche in Google Scholar
Durant, S.M., Pettorelli, N., Bashir, S., Woodroffe, R., Wacher, T., De Ornellas, P., Ransom, C., Abáigar, T., Abdelgadir, M., El Alqamy, H., et al.. (2012). Forgotten biodiversity in desert ecosystems. Science 336: 1379–1380, https://doi.org/10.1126/science.336.6087.13.Suche in Google Scholar
Fick, S.E. and Hijmans, R.J. (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37: 4302–4315, https://doi.org/10.1002/joc.5086.Suche in Google Scholar
Fischer, C., Gayer, C., Kurucz, K., Riesch, F., Tscharntke, T., and Batáry, P. (2018). Ecosystem services and disservices provided by small rodents in arable fields: effects of local and landscape management. J. Appl. Ecol. 55: 548–558, https://doi.org/10.1111/1365-2664.13016.Suche in Google Scholar
Franklin, J.F., Spies, T.A., Pelt, R.V., Carey, A.B., Thornburgh, D.A., Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., et al.. (2002). Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 155: 399–423, https://doi.org/10.1016/S0378-1127(01)00575-8.Suche in Google Scholar
Fricke, E.C., Ordonez, A., Rogers, H.S., and Svenning, J.-C. (2022). The effects of defaunation on plants’ capacity to track climate change. Science 375: 210–214, https://doi.org/10.1126/science.abk3510.Suche in Google Scholar PubMed
Geiser, F. and Ruf, T. (1995). Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol. Zool. 68: 935–966, https://doi.org/10.1086/physzool.68.6.30163788.Suche in Google Scholar
Gouat, P. and Yahyaoui, I.E. (2001). Reproductive period and group structure variety in the Barbary ground squirrel Atlantoxerus getulus. Preliminary results. In: Denys, C., Granjon, L., and Poulet, A. (Eds.). African small mammals. Petits mammifères africains. I.R.D., Paris, pp. 343–352.Suche in Google Scholar
Guisan, A. and Zimmermann, N.E. (2000). Predictive habitat distribution models in ecology. Ecol. Model. 135: 147–186, https://doi.org/10.1016/S0304-3800(00)00354-9.Suche in Google Scholar
Habibi, I., Achour, H., Bounaceur, F., Benaradj, A., and Aulagnier, S. (2024). Predicting the future distribution of the Barbary ground squirrel (Atlantoxerus getulus) under climate change using niche overlap analysis and species distribution modeling. Environ. Monit. Assess. 196: 1140, https://doi.org/10.1007/s10661-024-13350-2.Suche in Google Scholar PubMed
Hurst, Z.M., McCleery, R.A., Collier, B.A., Silvy, N.J., Taylor, P.J., and Monadjem, A. (2014). Linking changes in small mammal communities to ecosystem functions in an agricultural landscape. Mamm. Biol. 79: 17–23, https://doi.org/10.1016/j.mambio.2013.08.008.Suche in Google Scholar
Jodice, P.G.R. and Humphrey, S.R. (1992). Activity and diet of the round-tailed muskrat (Neofiber alleni) in relation to water level fluctuations. Am. Midl. Nat. 127: 152–160, https://doi.org/10.2307/2426374.Suche in Google Scholar
Johnston, K.M., Freund, K.A., and Schmitz, O.J. (2012). Projected range shifting by montane mammals under climate change: implications for Cascadia’s National Parks. Ecosphere 3: 97, https://doi.org/10.1890/ES12-00077.1.Suche in Google Scholar
Kelt, D.A. (2011). Comparative ecology of desert small mammals: a selective review of the past 30 years. J. Mammal. 92: 1158–1178, https://doi.org/10.1644/10-MAMM-S-238.Suche in Google Scholar
Kingdon, J. (2015). The Kingdon field guide to African mammals, 2nd ed. London: Bloomsbury Publishing.Suche in Google Scholar
Kowalski, K. and Rzebik-Kowalska, B. (1991). Mammals of Algeria. Polish Academy of Sciences, Institute of Systematics and Evolution of Animals, and Ossolineum, Wrockaw, Warsawa and Krakow.Suche in Google Scholar
Lacher, T.E.Jr., Davidson, A.D., Fleming, T.H., Gómez- Ruiz, E.P., Mccracken, G.F., Owen- Smith, N., Peres, C.A., and Vander Wall, S.B. (2019). The functional roles of mammals in ecosystems. J. Mammal. 100: 942–964, https://doi.org/10.1093/jmammal/gyy183.Suche in Google Scholar
Le Berre, M. (1990). Faune du Sahara. 2. Mammifères. Lechevalier – Chabaud, Paris.Suche in Google Scholar
Lenoir, J. and Svenning, J.-C. (2015). Climate-related range shifts: a global multidimensional synthesis and new research directions. Ecography 38: 15–28, https://doi.org/10.1111/ecog.00967.Suche in Google Scholar
López-Darias, M. and Lobo, J.M. (2008). Factors affecting invasive species abundance: the Barbary ground squirrel on Fuerteventura Island, Spain. Zool. Stud. 47: 268–281.Suche in Google Scholar
López-Darias, M. and Nogales, M. (2008). Effects of the invasive Barbary ground squirrel (Atlantoxerus getulus) on seed dispersal systems of insular xeric environments. J. Arid Environ. 72: 926–939, https://doi.org/10.1016/j.jaridenv.2007.12.006.Suche in Google Scholar
López-Darias, M., Lobo, J.M., and Gouat, P. (2008). Predicting potential distributions of invasive species: the exotic Barbary ground squirrel in the Canarian archipelago and the west Mediterranean region. Biol. Invasions 10: 1027–1040, https://doi.org/10.1007/s10530-007-9181-2.Suche in Google Scholar
Loumassine, H.-E., Allegrini, B., Bounaceur, F., Peyre, O., and Aulagnier, S. (2017). A new mammal species for Algeria, Rhinopoma microphyllum (Chiroptera: Rhinopomatidae): morphological and acoustic identification. Mammalia 82: 85–88, https://doi.org/10.1515/mammalia-2016-0153.Suche in Google Scholar
Middleton, N. and Thomas, D.S.G. (1997). World atlas of desertification, 2nd ed. London: United Nations Environment Programme/Arnold.Suche in Google Scholar
Moussouni, A. and Scaravelli, D. (2024). New records of Libyan striped weasel Ictonyx libycus and common genet Genetta genetta from the Algerian Sahara. Small Carniv. Conserv. 62: e62005.Suche in Google Scholar
Nicolas, V., Souttou, K., Gouissem, K., Doumandji, S., and Denys, C. (2014). First molecular evidence for the presence of Gerbillus latastei (Rodentia, Muridae) in Algeria. Mammalia 78: 267–271, https://doi.org/10.1515/mammalia-2013-0059.Suche in Google Scholar
Nogales, M., Rodríguez-Luengo, J.L., and Marrero, P. (2006). Ecological effects and distribution of invasive non-native mammals on the Canary Islands. Mamm. Rev. 36: 49–65.10.1111/j.1365-2907.2006.00077.xSuche in Google Scholar
Nyimbili, F. and Nyimbili, L. (2024). Types of purposive sampling techniques with their examples and application in qualitative research studies. Brit. J. Multidiscip. Adv. Stud. 5: 90–99, https://doi.org/10.37745/bjmas.2022.0419.Suche in Google Scholar
Ojeda, R.A., Campos, C.M., Gonnet, J.M., Borghi, C.E., and Roig, V.G. (1998). The MaB Reserve of Ñacuñán, Argentina: its role in understanding the Monte Desert biome. J. Arid Environ. 39: 299–313, https://doi.org/10.1006/jare.1998.0398.Suche in Google Scholar
Parmesan, C. and Yohe, G.A. (2003). Globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42, https://doi.org/10.1038/nature01286.Suche in Google Scholar PubMed
Petter, F. and Saint-Girons, M.C. (1965). Les rongeurs du Maroc. Trav. Inst. Sci. Cherifien Ser. Zool. 31: 20–31.Suche in Google Scholar
Phillips, S.J., Anderson, R.P., and Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Model. 190: 231–259, https://doi.org/10.1016/j.ecolmodel.2005.03.026.Suche in Google Scholar
Qninba, A., Mahamoud, A., Hilmi, M., Cuzin, F., and Thévenot, M. (2023). L’Écureuil de Berbérie Atlantoxerus getulus continue son expansion vers le Nord le long des plaines centre-atlantiques du Maroc. Bull. Inst. Sci. Rabat. Sci. Vie 45: 47–50.Suche in Google Scholar
Rammou, D.-L., Astaras, C., Migli, D., Boutsis, G., Galanaki, A., Kominos, T., and Youlatos, D. (2022). European ground squirrels at the edge: current distribution status and anticipated impact of climate on Europe’s southernmost population. Land 11: 301, https://doi.org/10.3390/land11020301.Suche in Google Scholar
Rihane, A., El Hamoumi, R., El Agbani, M.A., Qninba, A., and Denys, C. (2018). Expansion of the North African ground squirrel Atlantoxerus getulus (Rodentia) along the Moroccan Mid-Atlantic Plains. Mammalia 83: 1–7, https://doi.org/10.1515/mammalia-2017-0150.Suche in Google Scholar
Saint Girons, M.C. (1953). Note sur le territoire et le cycle d’activité d’Atlantoxerus getulus L. dans le massif du Toubkal (Haut Atlas marocain). Mammalia 17: 75–82, https://doi.org/10.1515/mamm.1953.17.2.75.Suche in Google Scholar
Saint Girons, M.C. (1954). Étude de quelques microclimats du versant nord du massif du Toubkal (Haut Atlas): leur importance écologique. Vie Milieu 5: 14–34.Suche in Google Scholar
Saint Girons, M.C. (1974). Rongeurs, lagomorphes et insectivores du Massif du Toubkal (Haut Atlas marocain). Bull. Soc. Sci. Nat. Maroc 54: 55–59.Suche in Google Scholar
Santos, M.J., Thorne, J.H., and Moritz, C. (2014). Synchronicity in elevation range shifts among small mammal and vegetation over the last century is stronger for omnivores. Ecography 37: 1–13, https://doi.org/10.1111/ecog.00931.Suche in Google Scholar
Santos, M.J., Smith, A.B., Thorne, J.H., and Moritz, C. (2017). The relative influence of change in habitat and climate on elevation range limits in small mammals in Yosemite National Park, California, U.S.A. Clim. Change Respond. 4: 7, https://doi.org/10.1186/s40665-017-0035-6.Suche in Google Scholar
Schwimmer, H. and Haim, A. (2009). Physiological adaptations of small mammals to desert ecosystems. Integr. Zool. 4: 357–366, https://doi.org/10.1111/j.1749-4877.2009.00176.x.Suche in Google Scholar PubMed
Steele, M.A. (2008). Evolutionary interactions between tree squirrels and trees: a review and synthesis. Curr. Sci. 95: 871–876.Suche in Google Scholar
Steele, M.A., Manierre, S., Genna, T., Contreras, T.A., Smallwood, P.D., and Pereira, M.E. (2006). The innate basis of food-hoarding decisions in grey squirrels: evidence for behavioural adaptations to the oaks. Anim. Behav. 71: 155–160, https://doi.org/10.1016/j.anbehav.2005.05.005.Suche in Google Scholar
Steele, M.A., Rompre, G., Zhang, H., Stratford, J., Suchocki, M., and Marino, S. (2015). Scatter hoarding rodents favor higher predation risks for cache sites: the potential for predators to influence the seed dispersal process. Integr. Zool. 10: 257–266, https://doi.org/10.1111/1749-4877.12134.Suche in Google Scholar PubMed
Xiao, Z. and Zhang, Z. (2012). Behavioral responses to acorn germination by tree squirrels in an old forest where white oaks have long been extirpated. Anim. Behav. 84: 945–951, https://doi.org/10.1016/j.anbehav.2012.01.013.Suche in Google Scholar
Xiao, Z., Jansen, P.A., and Zhang, Z. (2006). Using seed-tagging methods for assessing post-dispersal seed fate in rodent-dispersed trees. For. Ecol. Manag. 223: 18–23, https://doi.org/10.1016/j.foreco.2005.10.054.Suche in Google Scholar
Yi, X., Liu, G., Steele, M.A., Shen, Z., and Liu, C. (2013). Directed seed dispersal by a scatter-hoarding rodent: the effects of soil water content. Anim. Behav. 86: 851–857, https://doi.org/10.1016/j.anbehav.2013.07.028.Suche in Google Scholar
Zhang, M., Dong, Z., Yi, X., and Bartlow, A.W. (2014). Acorns containing deeper plumule survive better: how white oaks counter embryo excision by rodents. Ecol. Evol. 4: 59–66, https://doi.org/10.1002/ece3.898.Suche in Google Scholar PubMed PubMed Central
Zhang, Y., Tariq, A., Hughes, A.C., Hong, D., Wei, F., Sun, H., Sardans, J., Peñuelas, J., Perry, G., Qiao, J., et al.. (2023). Challenges and solutions to biodiversity conservation in arid lands. Sci. Total Environ. 857: 159695, https://doi.org/10.1016/j.scitotenv.2022.159695.Suche in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/mammalia-2024-0076).
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Ecology
- Feeding ecology of marsupials (Didelphimorphia, Didelphidae) in different forest environments in eastern Brazil
- Habitat configuration and persistence of an endangered subterranean rodent in the Brazilian Pampa
- Formation, maintenance, and dissolution of winter nesting groups of Siberian flying squirrels
- Bat diversity in the middle course of the Uruguay river (Argentina)
- Biogeography
- Tapirus kabomani expanding its range in the Amazon: first record of the species in Cristalino State Park, Mato Grosso, Brazil
- Confirming the presence of the Bare-tailed woolly opossum, Caluromys philander (Didelphidae) in Colombia
- New records and potential distribution of the Barbary ground squirrel (Atlantoxerus getulus) in arid ecosystems of Western Algeria
- Evolutionary Biology
- Records of coloration anomalies in bats from protected areas of Brazilian Amazon
- Taxonomy/Phylogeny
- Morphological and molecular data reveal a species complex within Gracilinanus aceramarcae (Tate, 1931)
- Corrigendum
- Corrigendum to: The first record of the long-eared hedgehog (Hemiechinus auritus Gmelin, 1770) in Lebanon
Artikel in diesem Heft
- Frontmatter
- Ecology
- Feeding ecology of marsupials (Didelphimorphia, Didelphidae) in different forest environments in eastern Brazil
- Habitat configuration and persistence of an endangered subterranean rodent in the Brazilian Pampa
- Formation, maintenance, and dissolution of winter nesting groups of Siberian flying squirrels
- Bat diversity in the middle course of the Uruguay river (Argentina)
- Biogeography
- Tapirus kabomani expanding its range in the Amazon: first record of the species in Cristalino State Park, Mato Grosso, Brazil
- Confirming the presence of the Bare-tailed woolly opossum, Caluromys philander (Didelphidae) in Colombia
- New records and potential distribution of the Barbary ground squirrel (Atlantoxerus getulus) in arid ecosystems of Western Algeria
- Evolutionary Biology
- Records of coloration anomalies in bats from protected areas of Brazilian Amazon
- Taxonomy/Phylogeny
- Morphological and molecular data reveal a species complex within Gracilinanus aceramarcae (Tate, 1931)
- Corrigendum
- Corrigendum to: The first record of the long-eared hedgehog (Hemiechinus auritus Gmelin, 1770) in Lebanon