Home New records and potential distribution of the Barbary ground squirrel (Atlantoxerus getulus) in arid ecosystems of Western Algeria
Article
Licensed
Unlicensed Requires Authentication

New records and potential distribution of the Barbary ground squirrel (Atlantoxerus getulus) in arid ecosystems of Western Algeria

  • Abdenour Moussouni , Badis Bakhouche ORCID logo EMAIL logo , Imed Djemadi , Feriel Benhafid , Kawther Abid , Mohamed Boussekine , Belkacem Aimen Boulaouad and Amina Saadi
Published/Copyright: October 22, 2025

Abstract

This study aimed to investigate the species distribution of the Barbary ground squirrel within Tindouf Cultural Park, an arid region where no prior occurrence records for this species existed. Additionally, we assessed the species’ potential range by modelling its bioclimatic niche. Our field trips conducted on 2023 to various habitats in the Tindouf cultural park have confirmed the presence of the Barbary ground squirrel in nine sites, primarily in rocky, mountainous areas with water sources. Vegetation in these areas is diverse, with a dominance of Acacia and Argan trees. The squirrels showed a preference for argan fruits. Using GBIF data, 2,133 geo-referenced observations were collected, showing an increase in occurrences from the 2000s. Due to the nature of the data collected (presence only) we used Maxent for modelling Barbary ground squirrel bioclimatic niche and distribution. The model used proved to be excellent, with an AUC value of 0.977. The Jackknife test identified the minimum temperature of the coldest month, the precipitation of the coldest quarter, and the average diurnal range as the main influencing variables on the presence of the Barbary ground squirrel. The predictive distribution map shows that the squirrel could potentially inhabit a larger area in Algeria than what is currently observed.


Corresponding author: Badis Bakhouche, Laboratory of Biological Oceanography and the Marine Environment, University of Science and Technology of Houari Boumediene, BP 32, 16111 Algiers, Algeria, E-mail:

Acknowledgments

Many thanks to the entire team at the Tindouf Cultural Park, and especially to Haidas Hmida, who provided us with all the resources and support we needed to make this work a success.

  1. Research ethics: Although our study involved fieldwork, no animal was captured, handled, or disturbed in any way. All data were collected through non-invasive visual observations, GPS recordings, and habitat description. No specimens were collected, and no physical interaction with animals occurred at any time. According to current Algerian legislation, this type of purely observational fieldwork on non-threatened species outside protected areas does not require formal ethical approval. Nonetheless, we fully adhere to the ethical principles of research involving wildlife.

  2. Informed consent: Applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: The Directorate-General for Scientific Research and Technology Development (DGRSDT).

  7. Data availability: Not applicable.

References

Ahmim, M. (2019). Les mammifères sauvages d’Algérie. Répartition et biologie de la conservation. Les Editions du Net, Saint-Ouen-sur-Seine.Search in Google Scholar

Ahmim, M., Boubaker, Z., Boussekine, M., Moussouni, A., and Moali, A. (2022). Note about the new distribution area of Atlantoxerus getulus Linnaeus, 1758 (Mammalia, Rodentia) in Algeria. Int. J. Zool. Anim. Biol. 5: 000412.10.23880/izab-16000412Search in Google Scholar

Aulagnier, S., Gouat, P., and Thévenot, M. (2013). Atlantoxerus getulus Barbary ground squirell. In: Happold, D.C.D. (Ed.). Mammals of Africa. Volume III. Rodents, hares and rabbits. Bloomsbury Publishing, London, pp. 43–44.Search in Google Scholar

Aulagnier, S., Thévenot, M., and Cuzin, F. (2017). Les mammifères d’Afrique du Nord: Maroc, Algérie, Tunisie, Libye, 2nd ed. Paris: Biotope éditions/Muséum national d’Histoire naturelle.Search in Google Scholar

Aulagnier, S., Haffner, P., Mitchell-Jones, A.J., Moutou, F., and Zima, J. (2020). Mammifères d’Europe, d’Afrique du Nord et du Moyen-Orient. Delachaux et Niestlé, Paris.Search in Google Scholar

Bagnouls, F. and Gaussen, H. (1953). Saison sèche et indice xérothermique. Bull. Soc. Hist. Nat. Toulouse 88: 193–239.Search in Google Scholar

Barrett, G.W. and Peles, J.D. (1999). Landscape ecology of small mammals. Springer, New York.10.1007/978-0-387-21622-5Search in Google Scholar

Baziz, B., Doumandji, S., Denys, C., and Khemici, M. (2002). Répartition en Algérie du Pachyure étrusque Suncus etruscus (Insectivora, Soricidae). Première observation dans le nord-est du Sahara, à Biskra. Mammalia 66: 133–137.Search in Google Scholar

Bendjeddou, M.L., Bakhouche, B., and Bouslama, Z. (2014). A new locality for Tadarida teniotis (Rafinesque, 1814) (Mammalia, Chiroptera, Molossidae) in Algeria. Natura Rerum 3: 37–39.Search in Google Scholar

Bendjeddou, M.L., Bouam, I., and Khelfaoui, F. (2020). First photographed record of the naked-rumped tomb bat, Taphozous nudiventris Cretzschmar, 1830 (Chiroptera: Emballonuridae), in the Grand Maghreb. Afr. J. Ecol. 58: 852–854, https://doi.org/10.1111/aje.12780.Search in Google Scholar

Bennett, J.M., Sunday, J., Calosi, P., Villalobos, F., Martínez, B., Molina-Venegas, R., Araújo, M.B., Algar, A.C., Clusella-Trullas, S., Hawkins, B.A., et al.. (2021). The evolution of critical thermal limits of life on Earth. Nat. Commun. 12: 1198, https://doi.org/10.1038/s41467-021-21263-8.Search in Google Scholar PubMed PubMed Central

Boulaouad, B.A., Ayyach, K., Harzallah, B., Berlkacem, M., Missoum, M., Hadj Aissa, D., Attouche, K., and De Smet, K. (2024). Rediscovery of the pale fox (Vulpes pallida Cretzschmar, 1827) in Algeria: first confirmed record in over fifty years and assessment of its current distribution. Zool. Ecol. 34: 140–143, https://doi.org/10.35513/21658005.2024.2.7.Search in Google Scholar

Brahimi, M.F. and Belhamra, M. (2016). Diversité de la faune vertébrée du barrage Foum El Gherza (Biskra, Algérie). Courr. Savoir 21: 9–16.Search in Google Scholar

Brahmi, K., Kechekhouche, E., Mostefaoui, O., Bebba, K., Hadjoudj, M., Doumandji, S., Baziz, B., and Aulagnier, S. (2010). Extralimital presence of small mammals in north-eastern Algeria. Mammalia 74: 105–108, https://doi.org/10.1515/mamm.2010.002.Search in Google Scholar

Chaari, A. and Faucheux, M.J. (2012). L’Écureuil de Berbérie, Atlantoxerus getulus (Linnaeus 1758) (Rodentia: Sciuridae) au Sud-Ouest Marocain. Bull. Soc. Sci. Nat. Ouest Fr. 34: 200–208.Search in Google Scholar

Costello, M.J., May, R.M., and Stork, N.E. (2013). Can we name Earth’s species before they go extinct? Science 339: 413–416, https://doi.org/10.1126/science.1230318.Search in Google Scholar PubMed

Dragesco-Joffé, A. (1993). La vie sauvage au Sahara. Delachaux Niestlé, Paris.Search in Google Scholar

Drouai, H., Nouidjem, Y., and Mimeche, F. (2020). New record of two rodent species from Khenchela Region (East of Algeria). J. Bioresour. Manag. 7: 9, https://doi.org/10.35691/JBM.0202.0155.Search in Google Scholar

Durant, S.M., Pettorelli, N., Bashir, S., Woodroffe, R., Wacher, T., De Ornellas, P., Ransom, C., Abáigar, T., Abdelgadir, M., El Alqamy, H., et al.. (2012). Forgotten biodiversity in desert ecosystems. Science 336: 1379–1380, https://doi.org/10.1126/science.336.6087.13.Search in Google Scholar

Fick, S.E. and Hijmans, R.J. (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37: 4302–4315, https://doi.org/10.1002/joc.5086.Search in Google Scholar

Fischer, C., Gayer, C., Kurucz, K., Riesch, F., Tscharntke, T., and Batáry, P. (2018). Ecosystem services and disservices provided by small rodents in arable fields: effects of local and landscape management. J. Appl. Ecol. 55: 548–558, https://doi.org/10.1111/1365-2664.13016.Search in Google Scholar

Franklin, J.F., Spies, T.A., Pelt, R.V., Carey, A.B., Thornburgh, D.A., Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., et al.. (2002). Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 155: 399–423, https://doi.org/10.1016/S0378-1127(01)00575-8.Search in Google Scholar

Fricke, E.C., Ordonez, A., Rogers, H.S., and Svenning, J.-C. (2022). The effects of defaunation on plants’ capacity to track climate change. Science 375: 210–214, https://doi.org/10.1126/science.abk3510.Search in Google Scholar PubMed

Geiser, F. and Ruf, T. (1995). Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol. Zool. 68: 935–966, https://doi.org/10.1086/physzool.68.6.30163788.Search in Google Scholar

Gouat, P. and Yahyaoui, I.E. (2001). Reproductive period and group structure variety in the Barbary ground squirrel Atlantoxerus getulus. Preliminary results. In: Denys, C., Granjon, L., and Poulet, A. (Eds.). African small mammals. Petits mammifères africains. I.R.D., Paris, pp. 343–352.Search in Google Scholar

Guisan, A. and Zimmermann, N.E. (2000). Predictive habitat distribution models in ecology. Ecol. Model. 135: 147–186, https://doi.org/10.1016/S0304-3800(00)00354-9.Search in Google Scholar

Habibi, I., Achour, H., Bounaceur, F., Benaradj, A., and Aulagnier, S. (2024). Predicting the future distribution of the Barbary ground squirrel (Atlantoxerus getulus) under climate change using niche overlap analysis and species distribution modeling. Environ. Monit. Assess. 196: 1140, https://doi.org/10.1007/s10661-024-13350-2.Search in Google Scholar PubMed

Hurst, Z.M., McCleery, R.A., Collier, B.A., Silvy, N.J., Taylor, P.J., and Monadjem, A. (2014). Linking changes in small mammal communities to ecosystem functions in an agricultural landscape. Mamm. Biol. 79: 17–23, https://doi.org/10.1016/j.mambio.2013.08.008.Search in Google Scholar

Jodice, P.G.R. and Humphrey, S.R. (1992). Activity and diet of the round-tailed muskrat (Neofiber alleni) in relation to water level fluctuations. Am. Midl. Nat. 127: 152–160, https://doi.org/10.2307/2426374.Search in Google Scholar

Johnston, K.M., Freund, K.A., and Schmitz, O.J. (2012). Projected range shifting by montane mammals under climate change: implications for Cascadia’s National Parks. Ecosphere 3: 97, https://doi.org/10.1890/ES12-00077.1.Search in Google Scholar

Kelt, D.A. (2011). Comparative ecology of desert small mammals: a selective review of the past 30 years. J. Mammal. 92: 1158–1178, https://doi.org/10.1644/10-MAMM-S-238.Search in Google Scholar

Kingdon, J. (2015). The Kingdon field guide to African mammals, 2nd ed. London: Bloomsbury Publishing.Search in Google Scholar

Kowalski, K. and Rzebik-Kowalska, B. (1991). Mammals of Algeria. Polish Academy of Sciences, Institute of Systematics and Evolution of Animals, and Ossolineum, Wrockaw, Warsawa and Krakow.Search in Google Scholar

Lacher, T.E.Jr., Davidson, A.D., Fleming, T.H., Gómez- Ruiz, E.P., Mccracken, G.F., Owen- Smith, N., Peres, C.A., and Vander Wall, S.B. (2019). The functional roles of mammals in ecosystems. J. Mammal. 100: 942–964, https://doi.org/10.1093/jmammal/gyy183.Search in Google Scholar

Le Berre, M. (1990). Faune du Sahara. 2. Mammifères. Lechevalier – Chabaud, Paris.Search in Google Scholar

Lenoir, J. and Svenning, J.-C. (2015). Climate-related range shifts: a global multidimensional synthesis and new research directions. Ecography 38: 15–28, https://doi.org/10.1111/ecog.00967.Search in Google Scholar

López-Darias, M. and Lobo, J.M. (2008). Factors affecting invasive species abundance: the Barbary ground squirrel on Fuerteventura Island, Spain. Zool. Stud. 47: 268–281.Search in Google Scholar

López-Darias, M. and Nogales, M. (2008). Effects of the invasive Barbary ground squirrel (Atlantoxerus getulus) on seed dispersal systems of insular xeric environments. J. Arid Environ. 72: 926–939, https://doi.org/10.1016/j.jaridenv.2007.12.006.Search in Google Scholar

López-Darias, M., Lobo, J.M., and Gouat, P. (2008). Predicting potential distributions of invasive species: the exotic Barbary ground squirrel in the Canarian archipelago and the west Mediterranean region. Biol. Invasions 10: 1027–1040, https://doi.org/10.1007/s10530-007-9181-2.Search in Google Scholar

Loumassine, H.-E., Allegrini, B., Bounaceur, F., Peyre, O., and Aulagnier, S. (2017). A new mammal species for Algeria, Rhinopoma microphyllum (Chiroptera: Rhinopomatidae): morphological and acoustic identification. Mammalia 82: 85–88, https://doi.org/10.1515/mammalia-2016-0153.Search in Google Scholar

Middleton, N. and Thomas, D.S.G. (1997). World atlas of desertification, 2nd ed. London: United Nations Environment Programme/Arnold.Search in Google Scholar

Moussouni, A. and Scaravelli, D. (2024). New records of Libyan striped weasel Ictonyx libycus and common genet Genetta genetta from the Algerian Sahara. Small Carniv. Conserv. 62: e62005.Search in Google Scholar

Nicolas, V., Souttou, K., Gouissem, K., Doumandji, S., and Denys, C. (2014). First molecular evidence for the presence of Gerbillus latastei (Rodentia, Muridae) in Algeria. Mammalia 78: 267–271, https://doi.org/10.1515/mammalia-2013-0059.Search in Google Scholar

Nogales, M., Rodríguez-Luengo, J.L., and Marrero, P. (2006). Ecological effects and distribution of invasive non-native mammals on the Canary Islands. Mamm. Rev. 36: 49–65.10.1111/j.1365-2907.2006.00077.xSearch in Google Scholar

Nyimbili, F. and Nyimbili, L. (2024). Types of purposive sampling techniques with their examples and application in qualitative research studies. Brit. J. Multidiscip. Adv. Stud. 5: 90–99, https://doi.org/10.37745/bjmas.2022.0419.Search in Google Scholar

Ojeda, R.A., Campos, C.M., Gonnet, J.M., Borghi, C.E., and Roig, V.G. (1998). The MaB Reserve of Ñacuñán, Argentina: its role in understanding the Monte Desert biome. J. Arid Environ. 39: 299–313, https://doi.org/10.1006/jare.1998.0398.Search in Google Scholar

Parmesan, C. and Yohe, G.A. (2003). Globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42, https://doi.org/10.1038/nature01286.Search in Google Scholar PubMed

Petter, F. and Saint-Girons, M.C. (1965). Les rongeurs du Maroc. Trav. Inst. Sci. Cherifien Ser. Zool. 31: 20–31.Search in Google Scholar

Phillips, S.J., Anderson, R.P., and Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Model. 190: 231–259, https://doi.org/10.1016/j.ecolmodel.2005.03.026.Search in Google Scholar

Qninba, A., Mahamoud, A., Hilmi, M., Cuzin, F., and Thévenot, M. (2023). L’Écureuil de Berbérie Atlantoxerus getulus continue son expansion vers le Nord le long des plaines centre-atlantiques du Maroc. Bull. Inst. Sci. Rabat. Sci. Vie 45: 47–50.Search in Google Scholar

Rammou, D.-L., Astaras, C., Migli, D., Boutsis, G., Galanaki, A., Kominos, T., and Youlatos, D. (2022). European ground squirrels at the edge: current distribution status and anticipated impact of climate on Europe’s southernmost population. Land 11: 301, https://doi.org/10.3390/land11020301.Search in Google Scholar

Rihane, A., El Hamoumi, R., El Agbani, M.A., Qninba, A., and Denys, C. (2018). Expansion of the North African ground squirrel Atlantoxerus getulus (Rodentia) along the Moroccan Mid-Atlantic Plains. Mammalia 83: 1–7, https://doi.org/10.1515/mammalia-2017-0150.Search in Google Scholar

Saint Girons, M.C. (1953). Note sur le territoire et le cycle d’activité d’Atlantoxerus getulus L. dans le massif du Toubkal (Haut Atlas marocain). Mammalia 17: 75–82, https://doi.org/10.1515/mamm.1953.17.2.75.Search in Google Scholar

Saint Girons, M.C. (1954). Étude de quelques microclimats du versant nord du massif du Toubkal (Haut Atlas): leur importance écologique. Vie Milieu 5: 14–34.Search in Google Scholar

Saint Girons, M.C. (1974). Rongeurs, lagomorphes et insectivores du Massif du Toubkal (Haut Atlas marocain). Bull. Soc. Sci. Nat. Maroc 54: 55–59.Search in Google Scholar

Santos, M.J., Thorne, J.H., and Moritz, C. (2014). Synchronicity in elevation range shifts among small mammal and vegetation over the last century is stronger for omnivores. Ecography 37: 1–13, https://doi.org/10.1111/ecog.00931.Search in Google Scholar

Santos, M.J., Smith, A.B., Thorne, J.H., and Moritz, C. (2017). The relative influence of change in habitat and climate on elevation range limits in small mammals in Yosemite National Park, California, U.S.A. Clim. Change Respond. 4: 7, https://doi.org/10.1186/s40665-017-0035-6.Search in Google Scholar

Schwimmer, H. and Haim, A. (2009). Physiological adaptations of small mammals to desert ecosystems. Integr. Zool. 4: 357–366, https://doi.org/10.1111/j.1749-4877.2009.00176.x.Search in Google Scholar PubMed

Steele, M.A. (2008). Evolutionary interactions between tree squirrels and trees: a review and synthesis. Curr. Sci. 95: 871–876.Search in Google Scholar

Steele, M.A., Manierre, S., Genna, T., Contreras, T.A., Smallwood, P.D., and Pereira, M.E. (2006). The innate basis of food-hoarding decisions in grey squirrels: evidence for behavioural adaptations to the oaks. Anim. Behav. 71: 155–160, https://doi.org/10.1016/j.anbehav.2005.05.005.Search in Google Scholar

Steele, M.A., Rompre, G., Zhang, H., Stratford, J., Suchocki, M., and Marino, S. (2015). Scatter hoarding rodents favor higher predation risks for cache sites: the potential for predators to influence the seed dispersal process. Integr. Zool. 10: 257–266, https://doi.org/10.1111/1749-4877.12134.Search in Google Scholar PubMed

Xiao, Z. and Zhang, Z. (2012). Behavioral responses to acorn germination by tree squirrels in an old forest where white oaks have long been extirpated. Anim. Behav. 84: 945–951, https://doi.org/10.1016/j.anbehav.2012.01.013.Search in Google Scholar

Xiao, Z., Jansen, P.A., and Zhang, Z. (2006). Using seed-tagging methods for assessing post-dispersal seed fate in rodent-dispersed trees. For. Ecol. Manag. 223: 18–23, https://doi.org/10.1016/j.foreco.2005.10.054.Search in Google Scholar

Yi, X., Liu, G., Steele, M.A., Shen, Z., and Liu, C. (2013). Directed seed dispersal by a scatter-hoarding rodent: the effects of soil water content. Anim. Behav. 86: 851–857, https://doi.org/10.1016/j.anbehav.2013.07.028.Search in Google Scholar

Zhang, M., Dong, Z., Yi, X., and Bartlow, A.W. (2014). Acorns containing deeper plumule survive better: how white oaks counter embryo excision by rodents. Ecol. Evol. 4: 59–66, https://doi.org/10.1002/ece3.898.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Tariq, A., Hughes, A.C., Hong, D., Wei, F., Sun, H., Sardans, J., Peñuelas, J., Perry, G., Qiao, J., et al.. (2023). Challenges and solutions to biodiversity conservation in arid lands. Sci. Total Environ. 857: 159695, https://doi.org/10.1016/j.scitotenv.2022.159695.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/mammalia-2024-0076).


Received: 2024-05-26
Accepted: 2025-08-19
Published Online: 2025-10-22
Published in Print: 2025-11-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mammalia-2024-0076/pdf
Scroll to top button