Startseite Technik Radioactive waste treatment technology: a review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Radioactive waste treatment technology: a review

  • Gunjanaporn Tochaikul ORCID logo EMAIL logo , Archara Phattanasub , Piyatida Khemkham , Kanjanaporn Saengthamthawee , Nuttapong Danthanavat und Nutthapong Moonkum
Veröffentlicht/Copyright: 14. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Radioactive waste is generated from activities that utilize nuclear materials such as nuclear medicine or power plants. Depending on their half-life, they emit radiation continuously, ranging from seconds to millions of years. Exposure to ionizing radiation can cause serious harm to humans and the environment. Therefore, special attention is paid to the management of radioactive waste in order to deal with its large quantity and dangerous levels. Current treatment technologies are still being developed to improve efficiency in reducing the hazard level and waste volume, to minimize the impact on living organisms. Thus, the aim of this study was to provide an overview of the global radioactive waste treatment technologies that have been released in 2019–2021.


Corresponding author: Gunjanaporn Tochaikul, Faculty of Radiological Technology, Rangsit University, 52/347 Lak Hok, Mueang Pathum Thani District, Pathum Thani 12000, Thailand, E-mail:

Funding source: Thailand Institute of Nuclear Technology

Award Identifier / Grant number: TINT to University

Acknowledgment

We would like to thank the staffs of Faculty of Radiological Technology, Rangsit University, Thailand for suggestions which helped improvement of the information in this paper. Finally, I would like to thank our co-authors who gather ideas and helped throughout the work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We are very grateful to the Thailand Institute of Nuclear Technology, TINT for financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Ahmed, I., Joni, H.D., and Nowrin Pranti, H. (2019). Study of radioactive waste management of nuclear power plant: prospect of Rooppur Nuclear Power Plant. Global J. Res. Eng.: Mech. Mech. Eng. 19: 69–79. http://engineeringresearch.org/index.php/GJRE/article/view/1999.10.34257/GJREAVOL19IS4PG69Suche in Google Scholar

Ansari, S.A., Sahoo, G.C., Dey, S., Majumdar, S., and Mohapatra, P.K. (2020). Radiation stability of ceramic tubular membranes containing ammonium molybdophosphate (Amp) for the application of radio-cesium recovery from radioactive wastes. J. Radioanal. Nucl. Chem. 326: 1631–1638. https://doi.org/10.1007/s10967-020-07449-2.Suche in Google Scholar

Araujo, L.G., Borba, T.R., Ferreira, R.V.P., Canevesi, R.L.S., Silva, E.A.D., Dellamano, J.C., and Marumo, J.T. (2020). Use of calcium alginate beads and Saccharomyces cerevisiae for biosorption of (241)Am. J. Environ. Radioact. 223–224: 106399. https://doi.org/10.1016/j.jenvrad.2020.106399.Suche in Google Scholar PubMed

Banala, U.K., Das, N.P.I., and Toleti, S.R. (2021). Microbial interactions with uranium: towards an effective bioremediation approach. Environ. Technol. Innov. 21: 101254. https://doi.org/10.1016/j.eti.2020.101254.Suche in Google Scholar

Bennett, D., Higgo, J., and Wickham, S. (2001). Review of waste immobilisation matrices. Nirex Limited, United Kingdom.Suche in Google Scholar

Blasdale, W.C. and Slansky, C.M. (1939). The solubility curves of boric acid and the borates of sodium. J. Am. Chem. Soc. 61: 917–920. https://doi.org/10.1021/ja01873a043.Suche in Google Scholar

Bolisetty, S. and Mezzenga, R. (2016). Amyloid–carbon hybrid membranes for universal water purification. Nat. Nanotechnol. 11: 365–371. https://doi.org/10.1038/nnano.2015.310.Suche in Google Scholar PubMed

Bolisetty, S., Coray, N.M., Palika, A., Prenosil, G.A., and Mezzenga, R. (2020). Amyloid hybrid membranes for removal of clinical and nuclear radioactive wastewater. Environ. Sci. Water Res. Technol. 6: 3249–3254. https://doi.org/10.1039/d0ew00693a.Suche in Google Scholar

Bratskaya, S., Musyanovych, A., Zheleznov, V., Synytska, A., Marinin, D., Simon, F., and Avramenko, V. (2014). Polymer-inorganic coatings containing nanosized sorbents selective to radionuclides. 1. Latex/cobalt hexacyanoferrate (Ii) composites for cesium fixation. ACS Appl. Mater. Interfaces 6: 16769–16776. https://doi.org/10.1021/am5039196.Suche in Google Scholar PubMed

Buffle, J. (2006). The key role of environmental colloids/nanoparticles for the sustainability of life. Environ. Chem. 3: 155–158. https://doi.org/10.1071/env3n3_es.Suche in Google Scholar

Carter, M., Baker, N. and Burford, R.P. (1995). Polymer encapsulation of arsenic-containing waste. J. Appl. Polym. Sci. 58: 2039–2046. https://doi.org/10.1002/app.1995.070581115.Suche in Google Scholar

Chao, Z., Yin-Hua, S., De-Xin, D., Guang-Yue, L., Yue-Ting, C., Nan, H., Hui, Z., Zhong-Ran, D., Feng, L., Jing, S., et al.. (2019). Aspergillus niger changes the chemical form of uranium to decrease its biotoxicity, restricts its movement in plant and increase the growth of Syngonium podophyllum. Chemosphere 224: 316–323. https://doi.org/10.1016/j.chemosphere.2019.01.098.Suche in Google Scholar PubMed

Chen, D., Zhao, X., and Li, F. (2015). Influence of boron on rejection of trace nuclides by reverse osmosis. Desalination 370: 72–78. https://doi.org/10.1016/j.desal.2015.05.019.Suche in Google Scholar

Chen, D., Zhao, X., Li, F., and Zhang, X. (2016). Rejection of nuclides and silicon from boron-containing radioactive waste water using reverse osmosis. Separ. Purif. Technol. 163: 92–99. https://doi.org/10.1016/j.seppur.2016.02.027.Suche in Google Scholar

Chen, L., Wang, D., Long, C., and Cui, Z.X. (2019). Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmium- contaminated soil by Zebrina pendula Schnizl. Sci. Rep. 9: 19817. https://doi.org/10.1038/s41598-019-56262-9.Suche in Google Scholar PubMed PubMed Central

Chen, B., Chen, D., and Zhao, X. (2020a). The application of polyethylenimine grafting reverse osmosis membrane in treating boron‐containing low‐level radioactive wastewaters. J. Chem. Technol. Biotechnol. 95: 1085–1092. https://doi.org/10.1002/jctb.6291.Suche in Google Scholar

Chen, L., Long, C., Wang, D., and Yang, J. (2020b). Phytoremediation of cadmium (Cd) and uranium (U) contaminated soils by Brassica juncea L. enhanced with exogenous application of plant growth regulators. Chemosphere 242: 125112. https://doi.org/10.1016/j.chemosphere.2019.125112.Suche in Google Scholar PubMed

Chen, L., Yang, J.-Y., and Wang, D. (2020c). Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L.) enhanced with biodegradable chelating agents. J. Clean. Prod. 263: 121491. https://doi.org/10.1016/j.jclepro.2020.121491.Suche in Google Scholar

Chen, B., Yu, S., and Zhao, X. (2021a). The separation of radionuclides and silicon from boron-containing radioactive wastewater with modified reverse osmosis membranes. Process Saf. Environ. Protect. 146: 639–646. https://doi.org/10.1016/j.psep.2020.11.023.Suche in Google Scholar

Chen, L., Liu, J., Zhang, W., Zhou, J., Luo, D., and Li, Z. (2021b). Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: a review. J. Hazard Mater. 413: 125319. https://doi.org/10.1016/j.jhazmat.2021.125319.Suche in Google Scholar PubMed

Chmielewski, A. and Harasimowicz, M. (1995). Application of ultrafiltration and complexation to the treatment of low-level radioactive effluents. Separ. Sci. Technol. 30: 1779–1789. https://doi.org/10.1080/01496399508010376.Suche in Google Scholar

Choi, M.H., Jeong, S.W., Shim, H.E., Yun, S.J., Mushtaq, S., Choi, D.S., Jang, B.S., Yang, J.E., Choi, Y.J., and Jeon, J. (2017). Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1. Chem. Commun. (Camb) 53: 3937–3940. https://doi.org/10.1039/c7cc00720e.Suche in Google Scholar

Collier, N.C., Milestone, N.B., and Travis, K.P. (2019). A review of potential cementing systems for sealing and support matrices in deep borehole disposal of radioactive waste. Energies 12: 2393. https://doi.org/10.3390/en12122393.Suche in Google Scholar

Coumes, C.C.D. and Courtois, S. (2003). Cementation of a low-level radioactive waste of complex chemistry: investigation of the combined action of borate, chloride, sulfate and phosphate on cement hydration using response surface methodology. Cement Concr. Res. 33: 305–316. https://doi.org/10.1016/s0008-8846(02)00943-2.Suche in Google Scholar

Cronin, J. and Collier, N. (2012). Corrosion and expansion of grouted Magnox. Mineral. Mag. 76: 2901–2909. https://doi.org/10.1180/minmag.2012.076.8.05.Suche in Google Scholar

Das, P., Pathak, N., Sanyal, B., Dash, S., and Kadam, R.M. (2019). Exploring Na0.1sr9.8eu0.1(Po4)6f2 both as a potential phosphor material and host for radioactive waste immobilization. J. Alloys Compd. 810: 151906. https://doi.org/10.1016/j.jallcom.2019.151906.Suche in Google Scholar

De Araujo, L.G. and Marumo, J.T. (2018). Reaction of ion exchange resins with Fenton’s reagent. Environments 5: 123. https://doi.org/10.3390/environments5110123.Suche in Google Scholar

Deckers, J. (2020). Plasma technology to recondition radioactive waste: tests with simulated bitumen and concrete in a plasma test facility. IOP Conf. Ser.: Mater. Sci. Eng 818: 012006. https://doi.org/10.1088/1757-899x/818/1/012006.Suche in Google Scholar

Deng, D., Zhang, L., Dong, M., Samuel, R.E., Ofori-Boadu, A., and Lamssali, M. (2020). Radioactive waste: a review. Water Environ. Res. 92: 1818–1825. https://doi.org/10.1002/wer.1442.Suche in Google Scholar PubMed

Du, C., Zuo, R., Chen, M., Wang, J., Liu, X., Liu, L., and Lin, Y. (2020). Influence of colloidal Fe(Oh)3 on the adsorption characteristics of strontium in porous media from a candidate high-level radioactive waste geological disposal site. Environ. Pollut. 260: 113997. https://doi.org/10.1016/j.envpol.2020.113997.Suche in Google Scholar PubMed

Duan, J., Ji, H., Zhao, X., Tian, S., Liu, X., Liu, W., and Zhao, D. (2020). Immobilization of U(Vi) by stabilized iron sulfide nanoparticles: water chemistry effects, mechanisms, and long-term stability. Chem. Eng. J. 393: 124692. https://doi.org/10.1016/j.cej.2020.124692.Suche in Google Scholar

Dulama, M., Deneanu, N., Dulama, C., and Pavelescu, M. (2008). Experimental studies concerning the semipermeable membrane, 5th ed. 59. Revista de Chimie, pp. 544–549.10.37358/RC.08.4.1803Suche in Google Scholar

Duque-Redondo, E., Yamada, K., and Manzano, H. (2021). Effect of chloride and sulfate in the immobilization of Cs-137 in C-S-H gel. J. Adv. Concr. Technol. 19: 95–105. https://doi.org/10.3151/jact.19.95.Suche in Google Scholar

Ellis, R.J., Reinhart, B., Williams, N.J., Moyer, B.A., and Bryantsev, V.S. (2017). Capping the calix: how toluene completes cesium (I) coordination with calix [4] pyrrole. Chem. Commun. 53: 5610–5613. https://doi.org/10.1039/C7CC02347B.Suche in Google Scholar

Eskander, S.B. and Saleh, H.M. (2012). Cement mortar-degraded spinney waste composite as a matrix for immobilizing some low and intermediate level radioactive wastes: consistency under frost attack. J. Nucl. Mater. 420: 491–496. https://doi.org/10.1016/j.jnucmat.2011.10.041.Suche in Google Scholar

Eskander, S.B., Bayoumi, T.A., and Saleh, H.M. (2012). Performance of aged cement–polymer composite immobilizing borate waste simulates during flooding scenarios. J. Nucl. Mater. 420: 175–181. https://doi.org/10.1016/j.jnucmat.2011.09.029.Suche in Google Scholar

Eskander, S.B., Bayoumi, T.A., and Saleh, H.M. (2013). Leaching behavior of cement-natural clay composite incorporating real spent radioactive liquid scintillator. Prog. Nucl. Energy 67: 1–6. https://doi.org/10.1016/j.pnucene.2013.03.022.Suche in Google Scholar

Eun, H.-C., Park, S.-Y., Choi, W.-K., Kim, S.-B., Won, H.-J., Chang, N.-O., Lee, S.-B., Park, J.-S., Seo, B.-K., and Kim, K.-C. (2020). A waste-minimized chemical decontamination process for the decontamination of a nuclear reactor coolant system. J. Radioanal. Nucl. Chem. 326: 665–674. https://doi.org/10.1007/s10967-020-07340-0.Suche in Google Scholar

Fabry, F., Rehmet, C., Rohani, V., and Fulcheri, L. (2013). Waste gasification by thermal plasma: a review. Waste Biomass Valorization 4: 421–439. https://doi.org/10.1007/s12649-013-9201-7.Suche in Google Scholar

Favas, P.J.C., Pratas, J., Mitra, S., Sarkar, S.K., and Venkatachalam, P. (2016). Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine. Sci. Total Environ. 568: 350–368. https://doi.org/10.1016/j.scitotenv.2016.06.024.Suche in Google Scholar PubMed

Fedotov, M. A., Zinoveev, D.V., Grudinsky, P.I., Kovalenko, L.V., and Dyubanov, V.G. (2019). Utilization of red mud and boron-containing liquid radioactive wastes of nuclear power plants. IOP Conf. Ser.: Mater. Sci. Eng 525: 012095. https://doi.org/10.1088/1757-899x/525/1/012095.Suche in Google Scholar

Feng, Q., Zhang, Z., Chen, Y., Liu, L., Zhang, Z., and Chen, C. (2013). Adsorption and desorption characteristics of arsenic on soils: kinetics, equilibrium, and effect of Fe (OH)3 colloid, H2SiO3 colloid and phosphate. Procedia Environ. Sci. 18: 26–36. https://doi.org/10.1016/j.proenv.2013.04.005.Suche in Google Scholar

Feng, M.L., Sarma, D., Gao, Y.J., Qi, X.H., Li, W.A., Huang, X.Y., and Kanatzidis, M.G. (2018). Efficient removal of [Uo2](2+), Cs(+), and Sr(2+) ions by radiation-resistant gallium thioantimonates. J. Am. Chem. Soc. 140: 11133–11140. https://doi.org/10.1021/jacs.8b07457.Suche in Google Scholar PubMed

Filippova, E.O., Filippov, A.V., and Shulepov, I.A. (2016). Experimental study of sliding friction for PET track membranes. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Yurga, Russia, 012020.10.1088/1757-899X/125/1/012020Suche in Google Scholar

Foust, H. and Ghosehajra, M. (2010). Sizing an ultrafiltration process that will treat radioactive waste. Separ. Sci. Technol. 45: 1025–1032. https://doi.org/10.1080/01496391003688563.Suche in Google Scholar

Fuks, L., Herdzik-Koniecko, I., Kiegiel, K., and Zakrzewska-Koltuniewicz, G. (2020). Management of radioactive waste containing graphite: overview of methods. Energies 13: 4638. https://doi.org/10.3390/en13184638.Suche in Google Scholar

Gancarz, I., Bryjak, M., Kujawski, J., Wolska, J., Kujawa, J., and Kujawski, W. (2015). Plasma deposited fluorinated films on porous membranes. Mater. Chem. Phys. 151: 233–242. https://doi.org/10.1016/j.matchemphys.2014.11.059.Suche in Google Scholar

Garbil, R., Nieminen, M., Olin, M., Laatikainen-Luntama, J., Wickham, S.M., Doudou, S., Fuller, A.J., Kent, J., Fournier, M., Clarke, S., et al.. (2020). Thermal treatment for radioactive waste minimisation. EPJ Nuclear Sci. Technol. 6: 25. https://doi.org/10.1051/epjn/2019035.Suche in Google Scholar

Gardner, L.J., Walling, S.A., Hyatt, N.C. (2020). Hot isostatic pressing: thermal treatment trials of inactive and radioactive simulant UK intermediate level waste. IOP Conf. Ser.: Mater. Sci. Eng 818: 012009. https://doi.org/10.1088/1757-899x/818/1/012009.Suche in Google Scholar

Gilliam, T.M. and Wiles, C.C. (1996). Stabilization and solidification of hazardous, radioactive, and mixed wastes. ASTM, West Conshohoken, PA, USA.10.1520/STP1240-EBSuche in Google Scholar

Gong, H., Lin, X., Xie, Y., Liu, L., Zhou, J., Liao, H., Shang, R., and Luo, X. (2021). A novel self-crosslinked gel microspheres of Premna microphylla turcz leaves for the absorption of uranium. J. Hazard Mater. 404: 124151. https://doi.org/10.1016/j.jhazmat.2020.124151.Suche in Google Scholar PubMed

González, D., Amigo, J., and Suárez, F. (2017). Membrane distillation: perspectives for sustainable and improved desalination. Renew. Sustain. Energy Rev. 80: 238–259. http://doi.org/10.1016/j.rser.2017.05.078.10.1016/j.rser.2017.05.078Suche in Google Scholar

Gupta, D.K., Vukovic, A., Semenishchev, V.S., Inouhe, M., and Walther, C. (2020). Uranium accumulation and its phytotoxicity symptoms in Pisum sativum L. Environ. Sci. Pollut. Res. Int. 27: 3513–3522. https://doi.org/10.1007/s11356-019-07068-9.Suche in Google Scholar PubMed

Han, J., Hu, L., He, L., Ji, K., Liu, Y., Chen, C., Luo, X., and Tan, N. (2020). Preparation and uranium (Vi) biosorption for tri-amidoxime modified marine fungus material. Environ. Sci. Pollut. Res. Int. 27: 37313–37323. https://doi.org/10.1007/s11356-020-07746-z.Suche in Google Scholar PubMed

Handley-Sidhu, S., Hriljac, J.A., Cuthbert, M.O., Renshaw, J.C., Pattrick, R.A., Charnock, J.M., Stolpe, B., Lead, J.R., Baker, S., and Macaskie, L.E. (2014). Bacterially produced calcium phosphate nanobiominerals: sorption capacity, site preferences, and stability of captured radionuclides. Environ. Sci. Technol. 48: 6891–6898. https://doi.org/10.1021/es500734n.Suche in Google Scholar PubMed

Hou, X. (2018). Tritium and 14 C in the environment and nuclear facilities: sources and analytical methods. J. Nucl. Fuel Cycle Waste Technol. (JNFCWT) 16: 11–39. https://doi.org/10.7733/jnfcwt.2018.16.1.11.Suche in Google Scholar

Hu, N., Lang, T., Ding, D., Hu, J., Li, C., Zhang, H., and Li, G. (2019). Enhancement of repeated applications of chelates on phytoremediation of uranium contaminated soil by Macleaya cordata. J. Environ. Radioact. 199–200: 58–65. https://doi.org/10.1016/j.jenvrad.2018.12.023.Suche in Google Scholar PubMed

Hu, D.H., Chen, M.Q., Huang, Y.W., Wei, S.H., and Zhong, X.B. (2020). Evaluation on isothermal pyrolysis characteristics of typical technical solid wastes. Thermochim. Acta 688: 178604. https://doi.org/10.1016/j.tca.2020.178604.Suche in Google Scholar

Hu, N., Chen, S., Lang, T., Zhang, H., Chen, W., Li, G., and Ding, D. (2021). A novel method for determining the adequate dose of a chelating agent for phytoremediation of radionuclides contaminated soils by M. cordata. J. Environ. Radioact. 227: 106468. https://doi.org/10.1016/j.jenvrad.2020.106468.Suche in Google Scholar PubMed

Huang, H. and Tang, L. (2007). Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers. Manag. 48: 1331–1337. https://doi.org/10.1016/j.enconman.2006.08.013.Suche in Google Scholar

Huang, G., Chen, J., Dou, P., Yang, X., and Zhang, L. (2019a). In situ electrosynthesis of magnetic Prussian blue/ferrite composites for removal of cesium in aqueous radioactive waste. J. Radioanal. Nucl. Chem. 323: 557–565. https://doi.org/10.1007/s10967-019-06966-z.Suche in Google Scholar

Huang, G., Shao, L., He, X., and Jiang, L. (2019b). Treatment of simulated liquid radioactive waste containing cobalt by in-situ co-precipitation of Zn/Al layered double hydroxides. J. Radioanal. Nucl. Chem. 319: 847–854. https://doi.org/10.1007/s10967-018-06402-8.Suche in Google Scholar

Huang, Y.-J., Jiang, J., Guo, G.-Y., Zeng, F., and Liu, X.-H. (2020). A wet-oxidation procedure of radioactive waste resin and waste concentrated liquid for 3h and 14c analysis. J. Radioanal. Nucl. Chem. 326: 765–771. https://doi.org/10.1007/s10967-020-07354-8.Suche in Google Scholar

Imran, M., Hu, S., Luo, X., Cao, Y., and Samo, N. (2019). Phytoremediation through Bidens pilosa L., a nonhazardous approach for uranium remediation of contaminated water. Int. J. Phytoremediation 21: 752–759. https://doi.org/10.1080/15226514.2018.1556594.Suche in Google Scholar PubMed

Ivanets, A., Shashkova, I., Kitikova, N., Maslova, M., and Mudruk, N. (2019). New heterogeneous synthesis of mixed Ti-Ca-Mg phosphates as efficient sorbents of 137cs, 90sr and 60co radionuclides. J. Taiwan Inst. Chem. Eng. 104: 151–159. https://doi.org/10.1016/j.jtice.2019.09.001.Suche in Google Scholar

Ivanets, A., Kitikova, N., Shashkova, I., Radkevich, A., Stepanchuk, T., Maslova, M., and Mudruk, N. (2020). One-stage adsorption treatment of liquid radioactive wastes with complex radionuclide composition. Water Air Soil Pollut. 231: 151–159. https://doi.org/10.1007/s11270-020-04529-7.Suche in Google Scholar

Jeong, S.W. and Choi, Y.J. (2020). Extremophilic microorganisms for the treatment of toxic pollutants in the environment. Molecules 25. https://doi.org/10.3390/molecules25214916.Suche in Google Scholar PubMed PubMed Central

Jeong, S.W., Jung, J.H., Kim, M.K., Seo, H.S., Lim, H.M., and Lim, S. (2016). The three catalases in Deinococcus radiodurans: only two show catalase activity. Biochem. Biophys. Res. Commun. 469: 443–448. https://doi.org/10.1016/j.bbrc.2015.12.017.Suche in Google Scholar PubMed

Jin, M., Xiao, A., Zhu, L., Zhang, Z., Huang, H., and Jiang, L. (2019). The diversity and commonalities of the radiation-resistance mechanisms of Deinococcus and its up-to-date applications. AMB Express 9: 138. https://doi.org/10.1186/s13568-019-0862-x.Suche in Google Scholar PubMed PubMed Central

Khani, A., Rasulzade, H., and Aqapur, N. (2020). Green removal of hospital-medical wastes by designed integrated pyrolysis incineration system. J. Chem. Lett. 1: 89–92. https://doi.org/10.22034/JCHEMLETT.2020.120303.Suche in Google Scholar

Khelurkar, N., Shah, S., and Jeswani, H. (2015). A review of radioactive waste management. In: International Conference on Technologies for Sustainable Development (ICTSD). IEEE, pp. 1–6.10.1109/ICTSD.2015.7095849Suche in Google Scholar

Kichanov, S.E., Kenessarin, M., Balasoiu, M., Kozlenko, D.P., Nicu, M., Ionascu, L., Dragolici, A.C., Dragolici, F., Nazarov, K., and Abdurakhimov, B. (2020). Studies of the processes of hardening of cement materials for the storage of aluminum radioactive waste by neutron radiography. Phys. Part. Nucl. Lett. 17: 73–78. https://doi.org/10.1134/s1547477120010100.Suche in Google Scholar

Kim, K.-W., Foster, R.I., Kim, J., Sung, H.-H., Yang, D., Shon, W.-J., Oh, M.-K., and Lee, K.-Y. (2019). Glass-ceramic composite wasteform to immobilize and stabilize a uranium-bearing waste generated from treatment of a spent uranium catalyst. J. Nucl. Mater. 516: 238–246. https://doi.org/10.1016/j.jnucmat.2019.01.005.Suche in Google Scholar

Kitikova, N.V., Ivanets, A.I., Shashkova, I.L., Radkevich, A.V., Shemet, L.V., Kul’bitskaya, L.V., and Sillanpää, M. (2017). Batch study of 85 Sr adsorption from synthetic seawater solutions using phosphate sorbents. J. Radioanal. Nucl. Chem. 314: 2437–2447. https://doi.org/10.1007/s10967-017-5592-4.Suche in Google Scholar

Kolhe, N., Zinjarde, S., and Acharya, C. (2020). Impact of uranium exposure on marine yeast, Yarrowia lipolytica: insights into the yeast strategies to withstand uranium stress. J. Hazard Mater. 381: 121226. https://doi.org/10.1016/j.jhazmat.2019.121226.Suche in Google Scholar PubMed

Korolkov, I., Mashentseva, A., Güven, O., and Zdorovets, M. (2017). Modification of track-etched PET membranes by graft copolymerization of acrylic acid and N-vinylimidazole. Petrol. Chem. 57: 1233–1241. https://doi.org/10.1134/s0965544117130060.Suche in Google Scholar

Korolkov, I.V., Mashentseva, A.A., Güven, O., Gorin, Y.G., and Zdorovets, M.V. (2018). Protein fouling of modified microporous Pet track-etched membranes. Radiat. Phys. Chem. 151: 141–148. https://doi.org/10.1016/j.radphyschem.2018.06.007.Suche in Google Scholar

Kosaka, K., Asami, M., Kobashigawa, N., Ohkubo, K., Terada, H., Kishida, N., and Akiba, M. (2012). Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake. Water Res. 46: 4397–4404. https://doi.org/10.1016/j.watres.2012.05.055.Suche in Google Scholar PubMed

Kulagina, T., Kulagin, V., Nikiforova, E., Prikhodov, D., Shimanskiy, A., and Li, F. (2019a). Inclusion of liquid radioactive waste into a cement compound with an additive of multilayer carbon nanotubes. IOP Conf. Series: Earth Environ. Sci. 227. https://doi.org/10.1088/1755-1315/227/5/052030.Suche in Google Scholar

Kulagina, T., Kulagin, V., Nikiforova, E., Prikhodov, D., Alexander, S., and Li, F. (2019b). Inclusion of liquid radioactive waste into a cement compound with an additive of multilayer carbon nanotubes. IOP Conf. Series: Earth Environ. Sci. 227: 052030. https://doi.org/10.1088/1755-1315/227/5/052030.Suche in Google Scholar

Kurakhmedov, A., Ivanov, I., Aleksandrenko, V., Kozlovskiy, A., Arkhangelsky, E., and Zdorovets, M. (2017). Asymmetrical track-etched membranes prepared by double-sided irradiation on the Dc-60 cyclotron. Petrol. Chem. 57: 489–497. https://doi.org/10.1134/s0965544117060056.Suche in Google Scholar

Lai, J.L., Liu, Z.W., Li, C., and Luo, X.G. (2021). Analysis of accumulation and phytotoxicity mechanism of uranium and cadmium in two sweet potato cultivars. J. Hazard Mater. 409: 124997. https://doi.org/10.1016/j.jhazmat.2020.124997.Suche in Google Scholar PubMed

Lead, J.R. and Wilkinson, K.J. (2006). Aquatic colloids and nanoparticles: current knowledge and future trends. Environ. Chem. 3: 159–171. https://doi.org/10.1071/en06025.Suche in Google Scholar

Lee, W.E., Ojovan, M.I., Stennett, M.C., and Hyatt, N.C. (2013). Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv. Appl. Ceram. 105: 3–12. https://doi.org/10.1179/174367606x81669.Suche in Google Scholar

Lee, K.Y., Lee, S.H., Lee, J.E., and Lee, S.Y. (2019). Biosorption of radioactive cesium from contaminated water by microalgae Haematococcus pluvialis and Chlorella vulgaris. J. Environ. Manag. 233: 83–88. https://doi.org/10.1016/j.jenvman.2018.12.022.Suche in Google Scholar

Li, F. and Duan, X. (2006). Applications of layered double hydroxides. Layered Double Hydroxides 119: 193–223. https://doi.org/10.1002/chin.200624226.Suche in Google Scholar

Li, J., Liu, K., Yan, S., Li, Y., and Han, D. (2016). Application of thermal plasma technology for the treatment of solid wastes in China: an overview. Waste Manag. 58: 260–269. https://doi.org/10.1016/j.wasman.2016.06.011.Suche in Google Scholar

Li, C., Wang, M., Luo, X., Liang, L., Han, X., and Lin, X. (2019). Accumulation and effects of uranium on aquatic macrophyte Nymphaea tetragona Georgi: potential application to phytoremediation and environmental monitoring. J. Environ. Radioact. 198: 43–49. https://doi.org/10.1016/j.jenvrad.2018.12.018.Suche in Google Scholar

Luca, V., Bianchi, H.L., and Manzini, A.C. (2012). Cation immobilization in pyrolyzed simulated spent ion exchange resins. J. Nucl. Mater. 424: 1–11. https://doi.org/10.1016/j.jnucmat.2012.01.004.Suche in Google Scholar

Malkovsky, V. and Pek, A. (2009). Effect of colloids on transfer of radionuclides by subsurface water. Geol. Ore Deposits 51: 79–92. https://doi.org/10.1134/s1075701509020019.Suche in Google Scholar

Meng, X., Hua, Z., Dermatas, D., Wang, W., and Kuo, H.Y. (1998). Immobilization of mercury(Ii) in contaminated soil with used tire rubber. J. Hazard Mater. 57: 231–241. https://doi.org/10.1016/s0304-3894(97)00091-5.Suche in Google Scholar

Merroun, M.L. and Selenska-Pobell, S. (2008). Bacterial interactions with uranium: an environmental perspective. J. Contam. Hydrol. 102: 285–295. https://doi.org/10.1016/j.jconhyd.2008.09.019.Suche in Google Scholar PubMed

Missana, T., Alonso, Ú., García-Gutiérrez, M., and Mingarro, M. (2008). Role of bentonite colloids on europium and plutonium migration in a granite fracture. Appl. Geochem. 23: 1484–1497. https://doi.org/10.1016/j.apgeochem.2008.01.008.Suche in Google Scholar

Natarajan, V., Karunanidhi, M., and Raja, B. (2020). A critical review on radioactive waste management through biological techniques. Environ. Sci. Pollut. Res. Int. 27: 29812–29823. https://doi.org/10.1007/s11356-020-08404-0.Suche in Google Scholar

Nilchi, A., Ghanadi Maragheh, M., Khanchi, A., Farajzadeh, M., and Aghaei, A. (2004). Synthesis and ion-exchange properties of crystalline titanium and zirconium phosphates. J. Radioanal. Nucl. Chem. 261: 393–400. https://doi.org/10.1023/b:jrnc.0000034876.90837.fa.10.1023/B:JRNC.0000034876.90837.faSuche in Google Scholar

Noli, F., Kapashi, E., and Kapnisti, M. (2019). Biosorption of uranium and cadmium using sorbents based on Aloe vera wastes. J. Environ. Chem. Eng. 7. https://doi.org/10.1016/j.jece.2019.102985.Suche in Google Scholar

O’Connor, D., Peng, T., Zhang, J., Tsang, D.C., Alessi, D.S., Shen, Z., Bolan, N.S., and Hou, D. (2018). Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials. Sci. Total Environ. 619: 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132.Suche in Google Scholar

Ojovan, M.I., Lee, W.E., and Kalmykov, S.N. (2019). An introduction to nuclear waste immobilisation. Elsevier, London, United Kingdom.10.1016/B978-0-08-102702-8.00022-4Suche in Google Scholar

Ojovan, M.I. (2020). On alteration rate renewal stage of nuclear waste glass corrosion. MRS Adv. 5: 111–120. https://doi.org/10.1557/adv.2020.36.Suche in Google Scholar

Pancholi, K.C., Kaushik, C.P., Suprabha, Agarwal, S., Solankar, S.K., Mishra, S.K., Tomar, N.S., Bhandari, S., Ghorui, S., Bhardwaj, R.L., et al. (2020). Plasma pyrolysis and incineration for low level radioactive solid wastes. BARC Newsletter 52: 6–10.Suche in Google Scholar

Pedersen, C.J. (1967). Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89: 7017–7036. https://doi.org/10.1021/ja01002a035.Suche in Google Scholar

Perić, A., Plecas, I., and Kostadinović, A. (1992). Influence of ageing on the effective coefficient of the radionuclides Cs-137 and Co-60 in the system: bitumen-spent ion-exchange resins. Prog. Nucl. Energy 27: 1–4. http://doi.org/10.1016/0149-1970(92)90012-R.10.1016/0149-1970(92)90012-RSuche in Google Scholar

Pioro, I., Duffey, R.B., Kirillov, P.L., Pioro, R., Zvorykin, A., and Machrafi, R. (2019). Current status and future developments in nuclear-power industry of the world. J. Nucl. Eng. Radiat. Sci. 5. https://doi.org/10.1115/1.4042194.Suche in Google Scholar

Pollmann, K., Raff, J., Merroun, M., Fahmy, K., and Selenska-Pobell, S. (2006). Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol. Adv. 24: 58–68. https://doi.org/10.1016/j.biotechadv.2005.06.002.Suche in Google Scholar PubMed

Porteous, A. (2001). Energy from waste incineration–a state of the art emissions review with an emphasis on public acceptability. Appl. Energy 70: 157–167. https://doi.org/10.1016/s0306-2619(01)00021-6.Suche in Google Scholar

Prado, E.S.P., Dellamano, J.C., Carneiro, A.L.G., Santos, R.C., Petraconi, G., and Potiens, A.J. (2017). Technical feasibility study on volumetric reduction of radioactive wastes using plasma technology. In: International Nuclear Atlantic Conference, pp. 22–27. http://repositorio.ipen.br/handle/123456789/28326.Suche in Google Scholar

Prado, E.S.P., Miranda, F.S., De Araujo, L.G., Petraconi, G., and Baldan, M.R. (2020a). Thermal plasma technology for radioactive waste treatment: a review. J. Radioanal. Nucl. Chem. 325: 331–342.10.1007/s10967-020-07269-4Suche in Google Scholar

Prado, E.S.P., Miranda, F.S., Petraconi, G., and Potiens, A.J. (2020b). Use of plasma reactor to viabilise the volumetric reduction of radioactive wastes. Radiat. Phys. Chem. 168. https://doi.org/10.1016/j.radphyschem.2019.108625.Suche in Google Scholar

Qi, X., Hao, X., Chen, X., Xiao, S., Chen, S., Luo, X., Wang, S., Tian, J., Wang, D., and Tang, Y. (2018). Integrated phytoremediation system for uranium-contaminated soils by adding a plant growth promoting bacterial mixture and mowing grass. J. Soils Sediments 19: 1799–1808. https://doi.org/10.1007/s11368-018-2182-1.Suche in Google Scholar

Rahman, R., Ibrahium, H., and Hung, Y.-T. (2011). Liquid radioactive wastes treatment: a review. Water 3: 551–565. https://doi.org/10.3390/w3020551.Suche in Google Scholar

Rajpurohit, Y.S., Bihani, S.C., Waldor, M.K., and Misra, H.S. (2016). Phosphorylation of Deinococcus radiodurans RecA regulates its activity and may contribute to radioresistance. J. Biol. Chem. 291: 16672–16685. https://doi.org/10.1074/jbc.m116.736389.Suche in Google Scholar

Razab, M.K.A.A., Mansor, M.S., Noor, A.A.M., Latif, N.F.F.A., Rozi, S.M., Jaafar, K.N., and Jamaludin, F. (2020). Characterization of Go:I-131 for radioactive clinical waste water management in nuclear medicine. Mater. Sci. Forum 1010: 561–566. https://doi.org/10.4028/www.scientific.net/msf.1010.561.Suche in Google Scholar

Real, J., Persin, F., and Camarasa-Claret, C. (2002). Mechanisms of desorption of 134cs and 85sr aerosols deposited on urban surfaces. J. Environ. Radioact. 62: 1–15. https://doi.org/10.1016/s0265-931x(01)00136-9.Suche in Google Scholar

Ren, C.G., Kong, C.C., Wang, S.X., and Xie, Z.H. (2019). Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere 217: 773–779. https://doi.org/10.1016/j.chemosphere.2018.11.085.Suche in Google Scholar PubMed

Roh, C., Kang, C., and Lloyd, J.R. (2015). Microbial bioremediation processes for radioactive waste. Kor. J. Chem. Eng. 32: 1720–1726. https://doi.org/10.1007/s11814-015-0128-5.Suche in Google Scholar

Romanchuk, A.Y., Slesarev, A.S., Kalmykov, S.N., Kosynkin, D.V., and Tour, J.M. (2013). Graphene oxide for effective radionuclide removal. Phys. Chem. Chem. Phys. 15: 2321–2327. https://doi.org/10.1039/c2cp44593j.Suche in Google Scholar PubMed

Rudenko, L. and Khan, V. (2005). Membrane methods for treating liquid radioactive wastes from the shelter to remove transuranic elements. Radiochemistry 47: 89–92. https://doi.org/10.1007/s11137-005-0054-1.Suche in Google Scholar

Ruiz-Fresneda, M.A., Lopez-Fernandez, M., Martinez-Moreno, M.F., Cherkouk, A., Ju-Nam, Y., Ojeda, J.J., Moll, H., and Merroun, M.L. (2020). Molecular binding of Eu(III)/Cm(III) by Stenotrophomonas bentonitica and its impact on the safety of future geodisposal of radioactive waste. Environ. Sci. Technol. 54: 15180–15190. https://doi.org/10.1021/acs.est.0c02418.Suche in Google Scholar PubMed

Šabanović, E., Muhić-Šarac, T., Nuhanović, M., and Memić, M. (2019). Biosorption of uranium(Vi) from aqueous solution by Citrus limon peels: kinetics, equilibrium and batch studies. J. Radioanal. Nucl. Chem. 319: 425–435. http://doi.org/10.1007/s10967-018-6358-3.10.1007/s10967-018-6358-3Suche in Google Scholar

Saleh, H.M. and Eskander, S.B. (2012). Characterizations of mortar-degraded spinney waste composite nominated as solidifying agent for radwastes due to immersion processes. J. Nucl. Mater. 430: 106–113. https://doi.org/10.1016/j.jnucmat.2012.06.042.Suche in Google Scholar

Saleh, H.M. and Eskander, S.B. (2019). Impact of water flooding on hard cement-recycled polystyrene composite immobilizing radioactive sulfate waste simulate. Constr. Build. Mater. 222: 522–530. https://doi.org/10.1016/j.conbuildmat.2019.06.173.Suche in Google Scholar

Saleh, H.M., El-Sheikh, S.M., Elshereafy, E.E., and Essa, A.K. (2019). Performance of cement-slag-titanate nanofibers composite immobilized radioactive waste solution through frost and flooding events. Constr. Build. Mater. 223: 221–232. https://doi.org/10.1016/j.conbuildmat.2019.06.219.Suche in Google Scholar

Saleh, H.M., Moussa, H.R., Mahmoud, H.H., El-Saied, F.A., Dawoud, M., and Abdel Wahed, R.S. (2020). Potential of the submerged plant Myriophyllum spicatum for treatment of aquatic environments contaminated with stable or radioactive cobalt and cesium. Prog. Nucl. Energy 118. https://doi.org/10.1016/j.pnucene.2019.103147.Suche in Google Scholar

Saleh, H.M. (2012). Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nucl. Eng. Des. 242: 425–432. https://doi.org/10.1016/j.nucengdes.2011.10.023.Suche in Google Scholar

Sanchez-Castro, I., Martinez-Rodriguez, P., Jroundi, F., Solari, P.L., Descostes, M., and Merroun, M.L. (2020). High-efficient microbial immobilization of solved U(Vi) by the Stenotrophomonas strain Br8. Water Res. 183: 116110. https://doi.org/10.1016/j.watres.2020.116110.Suche in Google Scholar PubMed

Santana, L.P., Cordeiro, T.C. (2016). Management of radioactive waste: a review. Proc. Intl. Acad. Ecol. Environ. Sci. 6: 38–43.Suche in Google Scholar

Saudi, H.A., Abd-Allah, W.M., and Shaaban, K.S. (2020). Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J. Mater. Sci. Mater. Electron. 31: 6963–6976. https://doi.org/10.1007/s10854-020-03261-6.Suche in Google Scholar

Sayenko, S.Yu., Shkuropatenko, V.A., Pylypenko, A.V., Zykova, A.V., Karsim, S.A., Andrieieva, V.V., and Moshta, S.V. (2020). Experimental study on radioactive waste immobilization in low temperature magnisium-potassium phosphate ceramic matrix. Probl. Atom. Sci. Technol. 2: 103–113. https://doi.org/10.46813/2020-126-103.Suche in Google Scholar

Sha, Y.H., Hu, N., Wang, Y.D., Chen, S.Y., Zou, C., Dai, Z.R., Zhang, H., and Ding, D.X. (2019). Enhanced phytoremediation of uranium contaminated soil by artificially constructed plant community plots. J. Environ. Radioact. 208–209: 106036. https://doi.org/10.1016/j.jenvrad.2019.106036.Suche in Google Scholar PubMed

Song, W., Wang, X., Sun, Y., Hayat, T., and Wang, X. (2019). Bioaccumulation and transformation of U(Vi) by sporangiospores of Mucor circinelloides. Chem. Eng. J. 362: 81–88. https://doi.org/10.1016/j.cej.2019.01.020.Suche in Google Scholar

Subramani, A., Cryer, E., Liu, L., Lehman, S., Ning, R.Y., and Jacangelo, J.G. (2012). Impact of intermediate concentrate softening on feed water recovery of reverse osmosis process during treatment of mining contaminated groundwater. Separ. Purif. Technol. 88: 138–145. https://doi.org/10.1016/j.seppur.2011.12.010.Suche in Google Scholar

Suh, J.W., Sohn, S.Y., and Lee, B.K. (2020). Patent clustering and network analyses to explore nuclear waste management technologies. Energy Policy 146. https://doi.org/10.1016/j.enpol.2020.111794.Suche in Google Scholar

Sun, Y., Shao, D., Chen, C., Yang, S., and Wang, X. (2013). Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ. Sci. Technol. 47: 9904–9910. https://doi.org/10.1021/es401174n.Suche in Google Scholar PubMed

Szajerski, P., Celinska, J., Gasiorowski, A., Anyszka, R., Walendziak, R., and Lewandowski, M. (2020). Radiation induced strength enhancement of sulfur polymer concrete composites based on waste and residue fillers. J. Clean. Prod. 271. https://doi.org/10.1016/j.jclepro.2020.122563.Suche in Google Scholar

Szajerski, P. (2021). Solidification of radioactive waste in lignite slag and bismuth oxide filled elastomer matrices: release mechanism, immobilization efficiency, long term radiation stability and aging. Chem. Eng. J. 404. https://doi.org/10.1016/j.cej.2020.126495.Suche in Google Scholar

Tan, Y.P., Zhang, X.W., Lv, J.W., Tang, D.S., and Su, Q. (2013). Transformation behaviors of U (Vi) on irons hydroxide colloids. Adv. Mater. Res.Trans Tech Publ 734: 2563–2567. https://doi.org/10.4028/www.scientific.net/amr.734-737.2563.Suche in Google Scholar

Tanner, K., Molina-Menor, E., Latorre-Perez, A., Vidal-Verdu, A., Vilanova, C., Pereto, J., and Porcar, M. (2020). Extremophilic microbial communities on photovoltaic panel surfaces: a two-year study. Microb. Biotechnol. 13: 1819–1830. https://doi.org/10.1111/1751-7915.13620.Suche in Google Scholar

Tijing, L.D., Woo, Y.C., Johir, M.A.H., Choi, J.-S., and Shon, H.K. (2014). A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation. Chem. Eng. J. 256: 155–159. https://doi.org/10.1016/j.cej.2014.06.076.Suche in Google Scholar

Tzeng, C.-C., Kuo, Y.-Y., Huang, T.-F., Lin, D.-L., and Yu, Y.-J. (1998). Treatment of radioactive wastes by plasma incineration and vitrification for final disposal. J. Hazard Mater. 58: 207–220. https://doi.org/10.1016/s0304-3894(97)00132-5.Suche in Google Scholar

Udalov, I.V., Peresadko, V.A., Polevich, O.V., and Kononenko, A.V. (2020). Restoration of soils contaminated with radionuclides by phytoredomediation method. Past 2: 151–155. https://doi.org/10.46813/2020-126-151.Suche in Google Scholar

Utton, C. and Godfrey, I. (2010). Review of stability of cemented grouted ion-exchange materials, sludges and flocs, Nnl Report to NDA RWMD NNL (09), 10212.Suche in Google Scholar

Valsala, T., Sonavane, M., Kore, S., Sonar, N., De, V., Raghavendra, Y., Chattopadyaya, S., Dani, U., Kulkarni, Y., and Changrani, R. (2011). Treatment of low level radioactive liquid waste containing appreciable concentration of Tbp degraded products. J. Hazard Mater. 196: 22–28. https://doi.org/10.1016/j.jhazmat.2011.08.065.Suche in Google Scholar PubMed

Vieira, L.C., De Araujo, L.G., De Padua Ferreira, R.V., Da Silva, E.A., Canevesi, R.L.S., and Marumo, J.T. (2019). Uranium biosorption by Lemna sp. and Pistia stratiotes. J. Environ. Radioact. 203: 179–186. https://doi.org/10.1016/j.jenvrad.2019.03.019.Suche in Google Scholar PubMed

Walling, S.A., Kauffmann, M.N., Gardner, L.J., Bailey, D.J., Stennett, M.C., Corkhill, C.L., and Hyatt, N.C. (2021). Characterisation and disposability assessment of multi-waste stream in-container vitrified products for higher activity radioactive waste. J. Hazard Mater. 401: 123764. https://doi.org/10.1016/j.jhazmat.2020.123764.Suche in Google Scholar PubMed

Wang, P. and Chung, T.-S. (2015). Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J. Membr. Sci. 474: 39–56. https://doi.org/10.1016/j.memsci.2014.09.016.Suche in Google Scholar

Wang, J. and Zhuang, S. (2020). Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes. Nucl. Eng. Technol. 52: 328–336. https://doi.org/10.1016/j.net.2019.08.001.Suche in Google Scholar

Wang, X., Yu, S., Jin, J., Wang, H., Alharbi, N.S., Alsaedi, A., Hayat, T., and Wang, X. (2016). Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions. Sci. Bull. 61: 1583–1593. https://doi.org/10.1007/s11434-016-1168-x.Suche in Google Scholar

Wang, X., Chen, L., Wang, L., Fan, Q., Pan, D., Li, J., Chi, F., Xie, Y., Yu, S., and Xiao, C. (2019). Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem. 62: 933–967. https://doi.org/10.1007/s11426-019-9492-4.Suche in Google Scholar

Wattal, P.K. (2013). Indian programme on radioactivewaste management. Indian Academy of Sciences 38: 849–857. https://doi.org/10.1007/s12046-013-0170-0.Suche in Google Scholar

Xiao-Teng, Z., Dong-Mei, J., Yi-Qun, X., Jun-Chang, C., Shuai, H., and Liang-Shu, X. (2019). Adsorption of uranium(VI) from aqueous solution by modified rice stem. J. Chem. 2019: 1–10. https://doi.org/10.1155/2019/6409504.Suche in Google Scholar

Yang, H., Sun, L., Zhai, J., Li, H., Zhao, Y., and Yu, H. (2014). In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water. J. Mater. Chem. A 2: 326–332. https://doi.org/10.1039/c3ta13548a.Suche in Google Scholar

Yılmaz, D. and Gürol, A. (2020). Efficient removal of iodine-131 from radioactive waste by nanomaterials. Instrum. Sci. Technol. 49: 45–54. http://doi.org/10.1080/10739149.2020.1775094.10.1080/10739149.2020.1775094Suche in Google Scholar

Yiqian, W., Xiaoqin, N., Cheng, W., Dong, F., Zhang, Y., Ding, C., Liu, M., Asiri, A.M., and Marwani, H.M. (2019). A synergistic biosorption and biomineralization strategy for Kocuria sp. to immobilizing U(Vi) from aqueous solution. J. Mol. Liq. 275: 215–220. https://doi.org/10.1016/j.molliq.2018.11.079.Suche in Google Scholar

Zakrzewska-Trznadel, G., Harasimowicz, M., and Chmielewski, A.G. (1999). Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation. J. Membr. Sci. 163: 257–264. https://doi.org/10.1016/s0376-7388(99)00171-4.Suche in Google Scholar

Zdorovets, M.V., Yeszhanov, A.B., Korolkov, I.V., Güven, O., Dosmagambetova, S.S., Shlimas, D.I., Zhatkanbayeva, Z.K., Zhidkov, I.S., Kharkin, P.V., Gluchshenko, V.N., et al.. (2020). Liquid low-level radioactive wastes treatment by using hydrophobized track-etched membranes. Prog. Nucl. Energy 118. https://doi.org/10.1016/j.pnucene.2019.103128.Suche in Google Scholar

Zhang, A., Zhang, W., Wang, Y., and Ding, X. (2016). Effective separation of cesium with a new silica-calix [4] biscrown material by extraction chromatography. Separ. Purif. Technol. 171: 17–25. https://doi.org/10.1016/j.seppur.2016.07.011.Suche in Google Scholar

Zhang, J., Chen, X., Zhou, J., and Luo, X. (2020). Uranium biosorption mechanism model of protonated Saccharomyces cerevisiae. J. Hazard Mater. 385: 121588. https://doi.org/10.1016/j.jhazmat.2019.121588.Suche in Google Scholar PubMed

Zhao, P., Ni, G., Jiang, Y., Chen, L., Chen, M., and Meng, Y. (2010). Destruction of inorganic municipal solid waste incinerator fly ash in a Dc arc plasma furnace. J. Hazard Mater. 181: 580–585. https://doi.org/10.1016/j.jhazmat.2010.05.052.Suche in Google Scholar PubMed

Zinicovscaia, I., Safonov, A., Zelenina, D., Ershova, Y., and Boldyrev, K. (2020). Evaluation of biosorption and bioaccumulation capacity of cyanobacteria Arthrospira (spirulina) platensis for radionuclides. Algal Res. 51. https://doi.org/10.1016/j.algal.2020.102075.Suche in Google Scholar

Received: 2021-09-27
Published Online: 2022-02-14
Published in Print: 2022-04-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/kern-2021-1029/html
Button zum nach oben scrollen