Startseite Medizin Hematological changes in severe early onset growth-restricted fetuses with absent and reversed end-diastolic flow in the umbilical artery
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hematological changes in severe early onset growth-restricted fetuses with absent and reversed end-diastolic flow in the umbilical artery

  • Franz Bahlmann EMAIL logo , Ammar Al Naimi , Manfred Ossendorf , Monica Schmidt-Fittschen und Arne Willruth
Veröffentlicht/Copyright: 9. August 2016

Abstract

Background:

Erythropoietin seems to play an important role in the regulation of fetal hypoxemia. The present prospective study was designed to determine if changes in erythropoietin levels can be found in fetuses with severe early-onset growth restriction and hemodynamic compromise.

Methods and results:

Erythropoietin, hemoglobin, hematocrit, platelet counts, normoblasts, lacate, arterial and venous blood gasses in the umbilical cord were determined in 42 fetuses with fetal growth restriction (IUGR) with absent (zero-flow) and 26 IUGR fetuses with retrograde end-diastolic flow (reverse-flow) in the umbilical artery. Color Doppler measurements were performed on the middle cerebral artery (PI) and ductus venosus [(S-a)/D and (S-a)/Vmean]. Erythropoietin concentrations were significantly lower in the zero-flow group (median: 128.0 mU/mL; range: 60.3–213 mU/mL) compared with the reverse-flow group (median: 202.5 mU/mL; range: 166–1182 mU/mL). Significant differences in median lactate concentrations were observed between the zero-flow group: 3.28 mmol/L (range; 2.3–4.7 mmol/L), and reverse-flow group: 5.6 mmol/L (range: 3.8–7.5 mmol/L). Fetuses with reverse-flow had significantly lower median platelet counts than fetuses with zero-flow (74 vs. 155/μL) and significantly lower normoblast counts (63 vs. 342/100 WBC).

Conclusions:

Fetuses with severe IUGR due to chronic placental insufficiency and absent or reversed flow in the umbilical artery show increased erythropoietin levels.


Corresponding author: Priv.-Doz. Dr. med. Dr. med. habil. Franz Bahlmann, Department of Obstetrics and Gynecology, Bürgerhospital, Nibelungenallee 37-41, D-60318 Frankfurt, Germany, Tel.: 0049-69-1700-412, Fax: 0049-69-1700-400

Acknowledgments

We would like to thank the Dr. Senckenbergische-Stiftung in Frankfurt, Germany for supporting this study.

References

[1] Figueras F, Gratacos E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn Ther. 2014;36:86–98.10.1159/000357592Suche in Google Scholar

[2] Severi FM, Rizzo G, Bocchi C, D’Antona, Verzuri MS, Arduini D. Intrauterine growth retardation and fetal cardiac function. Fetal Diagn Ther. 2000;15:8–19.10.1159/000020969Suche in Google Scholar

[3] Phelan JP, Ahn Mo, Korst LM, Martin GI. Nucleated red blood cells: a marker for fetal asphyxia. Am J Obstet Gynecol. 1995;173:1380–4.10.1016/0002-9378(95)90620-7Suche in Google Scholar

[4] Kingdom JCP, Burerell SJ, Kaufmann P. Patology and clinical implications of abnormal umbilical artery Doppler waveforms. Ultrasound Obstet Gynecol. 1997;9:271–86.10.1046/j.1469-0705.1997.09040271.xSuche in Google Scholar

[5] Mifsud W, Sebire NJ. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn Ther. 2014;36:117–28.10.1159/000359969Suche in Google Scholar

[6] Macara L, Kingdom JCP, Kaufmann P. Structural analysis of placenta terminal villi from growth-restricted pregnancies with abnormal umbilical artery Doppler waveforms. Placenta. 1996;17:37–48.10.1016/S0143-4004(05)80642-3Suche in Google Scholar

[7] Pardi G, Cetin I, Marconi AM, Lanfranchi A, Bozzetti P, Ferrazzi E, et al. Diagnostic value of blood sampling in fetuses with growth retardation. N Engl J Med. 1993;328:692–6.10.1056/NEJM199303113281004Suche in Google Scholar PubMed

[8] Axt-Fliedner R, Ertan K, Hendrik HJ, Wrobel M, König J, Mink D, et al.. Neonatal nucleated red blood cell counts in small-for gestational-age fetuses: relationship to fetoplacental Doppler studies. J Perinat Med. 2000;25:355–62.10.1515/JPM.2000.045Suche in Google Scholar PubMed

[9] Bahlmann F, Krummenauer F, Spahn S, Gallinat R, Kampmann C. Natriuretic petide levels in intrauterine growth restricted fetuses with absent and reversed and diastolic flow of the umbilical artery in relation to ductus venosus flow velocities. J Perinat Med. 2011;39:529–37.10.1515/jpm.2011.065Suche in Google Scholar PubMed

[10] Baschat AA, Kush M, Berg C, Gembruch U, Nicolaides KH, Harman CR, et al. Hematologic profile of neonate with growth restriction is associated with rate and degree of prenatal Doppler detoriation. Ultrasound Obstet Gynecol. 2013;41:66–72.10.1002/uog.12322Suche in Google Scholar PubMed

[11] Fumia FD, Edlestone DI, Holzman IR. Blood flow and oxygen delivery to fetal organs as functions of fetal hematocrit. Am J Obstet Gynecol. 1984;150:274–82.10.1016/S0002-9378(84)90365-XSuche in Google Scholar

[12] Mäkikallio K, Vuolteenaho O, Jouppila P, Räsänen J. Ultrasonographic and biochemical markers of human fetal cardiac dysfunction in placental insufficiency. Circulation. 2002;105:2058–63.10.1016/S0002-9378(01)80096-XSuche in Google Scholar

[13] Snijders RJM, Abbas A, Melby O, Ireland RM, Nicolaides KH. Fetal plasma erythropoietin concentration in severe growth retardation. Am J Obstet Gynecol. 1993;168:615–9.10.1016/0002-9378(93)90505-DSuche in Google Scholar

[14] Girsen A, Mäkikallio K, Hiilesmaa V, Hämäläinen E, Teramo K, Räsänen J. The relationship between human fetal cardiovascular hemodynamics and serum erythropoietin levels in growth-restricted fetuses. Am J Obstet Gynecol. 2007;196:467.e1–6.10.1016/j.ajog.2006.12.032Suche in Google Scholar

[15] Halevi A, Dollberg S, Manor D, Nussinovich R, Kaempfer R, Gale R. Is cord blood erythropoietin a marker of intrapartum hypoxia? J Perinatol. 1992;12:215–9.Suche in Google Scholar

[16] Maier RF, Böhme K, Dudenhausen JW, Obladen M. Cord blood erythropoietin in relation to different markers of fetal hypoxia. Obstet Gynecol. 1993;81:575–80.10.1016/0020-7292(94)90046-9Suche in Google Scholar

[17] Maier RF, Günther A, Vogel M, Dudenhausen JW, Obladen M. Umbilical venous erythropoietin and umbilical arterial pH in relation to morphologic placental abnormalities. Obstet Gynecol. 1994;84:81–7.Suche in Google Scholar

[18] Östlund E, Lindholm H, Hemsen A, Fried G. Fetal erythropoietin and endothelin-1: relation to hypoxia and intrauterine growth retardation. Acta Obstet Gynecol Scand. 2000;79:276–82.10.1080/j.1600-0412.2000.079004276.xSuche in Google Scholar

[19] Teramo KA, Widness JA. Increased fetal plasma and amniotic fluid erythropoietin concentrations: markers of intrauterine Hypoxia. Neonatology. 2009;95:105–16.10.1159/000153094Suche in Google Scholar

[20] Widness JA, Teramo KA, Clemons GA, Garcia JF, Cavalieri RL, Plasecki GJ, et al. Temporal response of immunoreative erythropoietin to acute hypoxemia in fetal sheep. Pediatr Research. 1986;20:15–9.10.1203/00006450-198601000-00004Suche in Google Scholar

[21] Widness JA, Scmidt RL, Sawyer ST. Erythropoietin transplacental passage – review of animal studies. J Perinat Med. 1995;23:61–70.10.1515/jpme.1995.23.1-2.61Suche in Google Scholar

[22] Bahlmann F, Wellek S, Reinhard I, Merz E, Steiner E, Welter C. Reference values of ductus venosus flow velocities and calculated waveform indices. Prenat Diagn. 2000;20: 623–34.10.1002/1097-0223(200008)20:8<623::AID-PD886>3.0.CO;2-2Suche in Google Scholar

[23] Bahlmann F, Reinhard I, Krummenauer F, Neubert S, Macchiella D, Wellek S. Blood flow velocity waveforms of the fetal middle cerebral artery in a normal population: reference values from 18 weeks to 42 weeks of gestation. J Perinat Med. 2002;30:490–501.10.1515/JPM.2002.077Suche in Google Scholar

[24] Bahlmann F, Fittschen M, Reinhard I, Wellek S, Puhl AG. Blood flow velocity waveforms of the umbilical artery in a normal population: reference values from 18 weeks to 42 week of gestation. Ultraschall Med. 2012;33:E80–7.10.1055/s-0031-1299294Suche in Google Scholar

[25] Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements – a prospective study. Am J Obstet Gynecol. 1985;151:333–7.10.1016/0002-9378(85)90298-4Suche in Google Scholar

[26] Davey DA, MacGillivray I. The classification and definition of the hypertensive disorders of pregnancy. Am J Obstet Gynecol. 1988;158:892–8.10.1016/0002-9378(88)90090-7Suche in Google Scholar

[27] Baschat AA, Gembruch U, Reiss I, Gortner L, Harman CR, Weiner CP. Neonatal nucleated red blood cell counts in growth-restricted fetuses: relationship to arterial and venous Doppler studies. Am J Obstet Gynecol. 1999;181:190–5.10.1016/S0002-9378(99)70458-8Suche in Google Scholar

[28] Bocking AD, Gagnon R, White SE, Homan J, Milne KM, Richardson BS. Circulatory responses to prolonged hypoxemia in fetal sheep. Am J Obstet Gynecol. 1988;159:1418–24.10.1016/0002-9378(88)90567-4Suche in Google Scholar

[29] Cohn HE, Sacks EJ, Heymann MA, Rudolph AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol. 1974;120:817–24.10.1016/0002-9378(74)90587-0Suche in Google Scholar

[30] Bartelds B, van Bel F, Teitel DF, Rudolph AM. Carotid, not aortic, chemoreceptors mediate the fetal cardiovascular response to acute hypoxemia in lambs. Pediatr Res. 1993;34:51–5.10.1203/00006450-199307000-00013Suche in Google Scholar

[31] Hecher K, Snijders R, Campbell S, Nicolaides K. Fetal venous, intracardiac, and arterial blood flow in intrauterine growth retardation. Relationship with blood gases. Am J Obstet Gynecol. 1995;173:10–5.10.1016/0002-9378(95)90161-2Suche in Google Scholar

[32] Kiserud T, Eik-Nes SH, Blaas HG, Simensen B. Ductus venosus blood velocity and the umbilical circulation in the seriously growth-retard fetus. Ultrasound Obstet Gynecol. 1994;4: 109–14.10.1046/j.1469-0705.1994.04020109.xSuche in Google Scholar PubMed

[33] Soothill PW, Nicolaides KH, Campbell S. Prenatal asphyxia, hyperlactemia and erythroblastosis in growth retarded fetuses. Br Med J. 1987;294:1051–3.10.1136/bmj.294.6579.1051Suche in Google Scholar

[34] Thomas RM, Canning CE, Cotes PM, Linch DC, Rodeck CH, Rossiter CE, et al. Erythropoietin and cord blood haemoglobin in the regulation of human fetal erythropoiesis. Br J Obstet Gynaecol. 1983;90:795–800.10.1111/j.1471-0528.1983.tb09318.xSuche in Google Scholar

[35] Abbas A, Snijders RJ, Nicolaides KH. Serum ferritin and cobalamin in growth-retarded fetuses. Br J Obstet Gyneacol. 1994;101:215–9.10.1111/j.1471-0528.1994.tb13112.xSuche in Google Scholar

[36] Ireland R, Abbas A, Thilaganathan B, Melbye O, Snijders R, Layton M, et al. Fetal and maternal erythropoietin levels in normal pregnancy. Fetal Diagn Ther. 1992;7:21–5.10.1159/000263645Suche in Google Scholar

[37] Moya FR, Grannum P, Widness JA, Clemons GK, Copel JA, Hobbins JC. Erythropoietin in human fetuses with immune hemolytic anemia and hydrops fetalis. Obstet Gynecol. 1993;82:353–8.Suche in Google Scholar

[38] Fried W, Barone-Varelas J. Regulation of the plasma erythropoietin level in hypoxic rats. Exp Hematol. 1984;12:706–11.Suche in Google Scholar

[39] Ruth V, Fyhrquist F, Clemons G, Raivio KO. Cord plasma vasopressin, erythropoietin, and hypoxanthine as indices of asphyxia at birth. Pediatr Res. 1988;24:490–4.10.1203/00006450-198810000-00015Suche in Google Scholar

[40] Minior VK, Shatzkin E, Divon MY. Nucleated red blood cell count in the differentiation of fetuses with pathologic growth restriction from healthy small-for-gestational-age fetuses. Am J Obstet Gynecol. 2000;182:1107–9.10.1067/mob.2000.105444Suche in Google Scholar

[41] Korst LM, Phelan JP, Wang YM, Ahn MO. Neonatal platelet counts in fetal brain injury. Am J Perinatol. 1999;16:79–83.10.1055/s-2007-993840Suche in Google Scholar

[42] Baschat AA, Gembruch U, Reiss I, Gortner L, Weiner CP, Harman CR. Absent umbilical artery end-diastolic velocity in growth-restricted fetuses: a risk factor for neonatal thrombocytopenia. Obstet Gynecol. 2000;96:162–6.10.1097/00006250-200008000-00002Suche in Google Scholar

[43] Weiner CP, Robillard JE. Atrial natriuretic factor, digoxin-like immunoreactive substance, norepinephrine, epinephrine, and plasma renin activity in human foetuses and their alteration by fetal disease. Am J Obstet Gynecol. 1988;159:1353–60.10.1016/0002-9378(88)90555-8Suche in Google Scholar

[44] Wilcox GR, Trudinger BJ. Fetal platelet consumption: a feature of placental insufficiency. Obstet Gynecol. 1991;77:616–21.Suche in Google Scholar

  1. The authors stated that there are no conflicts of interest regarding the publication of this article.

Received: 2016-2-11
Accepted: 2016-7-19
Published Online: 2016-8-9
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. Intrapartum care
  4. Recommendation and Guidelines for Perinatal Practice
  5. Delivery modes in case of fetal malformations
  6. Review article
  7. Obstetric analgesia – update 2016
  8. Highlight articles
  9. Risk factors and outcomes in “well-selected” vaginal breech deliveries: a retrospective observational study
  10. Induction of labor in breech presentation at term: a retrospective cohort study
  11. Evaluating fetal head dimension changes during labor using open magnetic resonance imaging
  12. Risk factors of uterine rupture with a special interest to uterine fundal pressure
  13. Diagnostic accuracy of fetal scalp lactate for intrapartum acidosis compared with scalp pH
  14. Reference values for Lactate Pro 2™ in fetal blood sampling during labor: a cross-sectional study
  15. Linear and non-linear analysis of uterine contraction signals obtained with tocodynamometry in prediction of operative vaginal delivery
  16. Evaluation of simparteam – a needs-orientated team training format for obstetrics and neonatology
  17. Transient fetal blood redistribution associated with maternal supine position
  18. Original articles
  19. Underlying causes of neonatal deaths in term singleton pregnancies: home births versus hospital births in the United States
  20. Fourfold increase in prevalence of gestational diabetes mellitus after adoption of the new International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria
  21. Hematological changes in severe early onset growth-restricted fetuses with absent and reversed end-diastolic flow in the umbilical artery
  22. Breast milk feeding in infants with inherited metabolic disorders other than phenylketonuria – a 10-year single-center experience
  23. Clinical significance of a false positive glucose challenge test in patients with a high body mass index
  24. Obituary
  25. Obituary – Edward Ogata (1945–2017)
  26. Congress Calendar
  27. Congress Calendar
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jpm-2016-0240/pdf
Button zum nach oben scrollen