An endocrine perspective on menstrual suppression for adolescents: achieving good suppression while optimizing bone health
-
Amit Lahoti
, Christine Yu
, Preneet Cheema Brar , Austin Dalgo , Evgenia Gourgari , Rebecca Harris , Manmohan K. Kamboj , Seth Marks , Radha Nandagopal , Laura Page, Vandana Raman
, Danielle G. Reynolds , Kyriakie Sarafoglou , Carrie Terrell and Takara L. Stanley
Abstract
Suppression of menstruation and/or ovarian function in adolescent girls may be desired for a variety of reasons. Numerous medical options exist. The choice of the appropriate modality for an individual patient depends on several factors based on differences in the efficacy of achieving menstrual suppression as well as in their side effect profiles. Adolescence is also a period of bone mass accrual in girls, and several of these modalities may negatively influence peak bone mass. This review focuses on the efficacy of achieving menstrual suppression and the effect on bone health of the various options through an overview of the current literature and also highlights areas in need of further research.
-
Research funding: None declared.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Authors state no conflict of interest.
-
Informed consent: Not applicable
-
Ethical approval: Not applicable
References
1. Albanese, A, Hopper, NW. Suppression of menstruation in adolescents with severe learning disabilities. Arch Dis Child 2007;92:629–32. https://doi.org/10.1136/adc.2007.115709.Search in Google Scholar PubMed PubMed Central
2. Carswell, JM, Roberts, SA. Induction and maintenance of amenorrhea in transmasculine and nonbinary adolescents. Transgend Health 2017;2:195–201. https://doi.org/10.1089/trgh.2017.0021.Search in Google Scholar PubMed PubMed Central
3. Sachedina, A, Todd, N. Dysmenorrhea, endometriosis and chronic pelvic pain in adolescents. J Clin Res Pediatr Endocrinol 2020;12:7–17. https://doi.org/10.4274/jcrpe.galenos.2019.2019.s0217.Search in Google Scholar
4. Tremollieres, F. Impact of oral contraceptive on bone metabolism. Best Pract Res Clin Endocrinol Metab 2013;27:47–53. https://doi.org/10.1016/j.beem.2012.09.002.Search in Google Scholar PubMed
5. Jackowski, SA, Baxter-Jones, ADG, McLardy, AJ, Pierson, RA, Rodgers, CD. The associations of exposure to combined hormonal contraceptive use on bone mineral content and areal bone mineral density accrual from adolescence to young adulthood: a longitudinal study. Bone Rep 2016;5:e333–e41. https://doi.org/10.1016/j.bonr.2015.06.001.Search in Google Scholar PubMed PubMed Central
6. Curtis, KM, Tepper, NK, Jatlaoui, TC, Berry-Bibee, E, Horton, LG, Zapata, LB, et al.. U.S. Medical eligibility Criteria for contraceptive use, 2016. MMWR Recomm Rep 2016;65:1–103. https://doi.org/10.15585/mmwr.rr6503a1.Search in Google Scholar PubMed
7. Stanczyk, FZ, Archer, DF, Bhavnani, BR. Ethinyl estradiol and 17beta-estradiol in combined oral contraceptives: pharmacokinetics, pharmacodynamics and risk assessment. Contraception 2013;87:706–27. https://doi.org/10.1016/j.contraception.2012.12.011.Search in Google Scholar PubMed
8. Sitruk-Ware, R. Pharmacological profile of progestins. Maturitas 2004;47:277–83. https://doi.org/10.1016/j.maturitas.2004.01.001.Search in Google Scholar PubMed
9. Sitruk-Ware, R. New progestagens for contraceptive use. Hum Reprod Update 2006;12:169–78. https://doi.org/10.1093/humupd/dmi046.Search in Google Scholar PubMed
10. Martin, KA, Anderson, RR, Chang, RJ, Ehrmann, DA, Lobo, RA, Murad, MH, et al.. Evaluation and treatment of hirsutism in premenopausal women: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2018;103:1233–57. https://doi.org/10.1210/jc.2018-00241.Search in Google Scholar PubMed
11. Edelman, A, Micks, E, Gallo, MF, Jensen, JT, Grimes, DA. Continuous or extended cycle vs. cyclic use of combined hormonal contraceptives for contraception. Cochrane Database Syst Rev 2014:CD004695. https://doi.org/10.1002/14651858.CD004695.pub3.Search in Google Scholar PubMed PubMed Central
12. Machado, RB, de Melo, NR, Maia, HJr. Bleeding patterns and menstrual-related symptoms with the continuous use of a contraceptive combination of ethinylestradiol and drospirenone: a randomized study. Contraception 2010;81:215–22. https://doi.org/10.1016/j.contraception.2009.10.010.Search in Google Scholar PubMed
13. Teichmann, A, Apter, D, Emerich, J, Greven, K, Klasa-Mazurkiewicz, D, Melis, GB, et al.. Continuous, daily levonorgestrel/ethinyl estradiol vs. 21-day, cyclic levonorgestrel/ethinyl estradiol: efficacy, safety and bleeding in a randomized, open-label trial. Contraception 2009;80:504–11. https://doi.org/10.1016/j.contraception.2009.05.128.Search in Google Scholar PubMed
14. Archer, DF, Jensen, JT, Johnson, JV, Borisute, H, Grubb, GS, Constantine, GD. Evaluation of a continuous regimen of levonorgestrel/ethinyl estradiol: phase 3 study results. Contraception 2006;74:439–45. https://doi.org/10.1016/j.contraception.2006.07.005.Search in Google Scholar PubMed
15. Moreau, C, Bouyer, J, Bajos, N, Rodriguez, G, Trussell, J. Frequency of discontinuation of contraceptive use: results from a French population-based cohort. Hum Reprod 2009;24:1387–92. https://doi.org/10.1093/humrep/dep027.Search in Google Scholar PubMed
16. Murphy, PA, Brixner, D. Hormonal contraceptive discontinuation patterns according to formulation: investigation of associations in an administrative claims database. Contraception 2008;77:257–63. https://doi.org/10.1016/j.contraception.2008.01.002.Search in Google Scholar PubMed
17. Van Vliet, HA, Grimes, DA, Helmerhorst, FM, Schulz, KF. Biphasic versus monophasic oral contraceptives for contraception. Cochrane Database Syst Rev 2006;3:CD002032. https://doi.org/10.1002/14651858.CD002032.pub2.Search in Google Scholar PubMed PubMed Central
18. van Vliet, HA, Grimes, DA, Lopez, LM, Schulz, KF, Helmerhorst, FM. Triphasic versus monophasic oral contraceptives for contraception. Cochrane Database Syst Rev 2006;3:CD003553. https://doi.org/10.1002/14651858.CD003553.pub3.Search in Google Scholar PubMed PubMed Central
19. Van Vliet, HA, Grimes, DA, Lopez, LM, Schulz, KF, Helmerhorst, FM. Triphasic versus monophasic oral contraceptives for contraception. Cochrane Database Syst Rev 2011;11:CD003553. https://doi.org/10.1002/14651858.CD003553.pub3.Search in Google Scholar
20. Van Vliet, HA, Raps, M, Lopez, LM, Helmerhorst, FM. Quadriphasic versus monophasic oral contraceptives for contraception. Cochrane Database Syst Rev 2011;11:CD009038. https://doi.org/10.1002/14651858.CD009038.pub2.Search in Google Scholar PubMed
21. Johnson, JV, Grubb, GS, Constantine, GD. Endometrial histology following 1 year of a continuous daily regimen of levonorgestrel 90 micro g/ethinyl estradiol 20 micro g. Contraception 2007;75:23–6. https://doi.org/10.1016/j.contraception.2006.07.009.Search in Google Scholar
22. Grandi, G, Piacenti, I, Volpe, A, Cagnacci, A. Modification of body composition and metabolism during oral contraceptives containing non-androgenic progestins in association with estradiol or ethinyl estradiol. Gynecol Endocrinol 2014;30:676–80. https://doi.org/10.3109/09513590.2014.922947.Search in Google Scholar
23. Grandi, G, Xholli, A, Napolitano, A, Piacenti, I, Bellafronte, M, Cagnacci, A. Prospective measurement of blood pressure and heart rate over 24 h in women using combined oral contraceptives with estradiol. Contraception 2014;90:529–34. https://doi.org/10.1016/j.contraception.2014.05.011.Search in Google Scholar
24. Miller, L, Hughes, JP. Continuous combination oral contraceptive pills to eliminate withdrawal bleeding: a randomized trial. Obstet Gynecol 2003;101:653–61. https://doi.org/10.1016/s0029-7844(03)00014-0.Search in Google Scholar
25. Galzote, RM, Rafie, S, Teal, R, Mody, SK. Transdermal delivery of combined hormonal contraception: a review of the current literature. Int J Womens Health 2017;9:315–21. https://doi.org/10.2147/ijwh.s102306.Search in Google Scholar
26. Lopez, LM, Grimes, DA, Gallo, MF, Stockton, LL, Schulz, KF. Skin patch and vaginal ring versus combined oral contraceptives for contraception. Cochrane Database Syst Rev 2013:CD003552. https://doi.org/10.1002/14651858.CD003552.pub4.Search in Google Scholar
27. van den Heuvel, MW, van Bragt, AJ, Alnabawy, AK, Kaptein, MC. Comparison of ethinylestradiol pharmacokinetics in three hormonal contraceptive formulations: the vaginal ring, the transdermal patch and an oral contraceptive. Contraception 2005;72:168–74. https://doi.org/10.1016/j.contraception.2005.03.005.Search in Google Scholar
28. Rubinstein, ML, Halpern-Felsher, BL, Irwin, CEJr. An evaluation of the use of the transdermal contraceptive patch in adolescents. J Adolesc Health 2004;34:395–401. https://doi.org/10.1016/s1054-139x(03)00367-7.Search in Google Scholar
29. Raine, TR, Foster-Rosales, A, Upadhyay, UD, Boyer, CB, Brown, BA, Sokoloff, A, et al.. One-year contraceptive continuation and pregnancy in adolescent girls and women initiating hormonal contraceptives. Obstet Gynecol 2011;117:363–71. https://doi.org/10.1097/aog.0b013e31820563d3.Search in Google Scholar PubMed PubMed Central
30. Harel, Z, Riggs, S, Vaz, R, Flanagan, P, Dunn, K, Harel, D. Adolescents’ experience with the combined estrogen and progestin transdermal contraceptive method ortho evra. J Pediatr Adolesc Gynecol 2005;18:85–90. https://doi.org/10.1016/j.jpag.2004.11.016.Search in Google Scholar PubMed
31. Stewart, FH, Brown, BA, Raine, TR, Weitz, TA, Harper, CC. Adolescent and young women’s experience with the vaginal ring and oral contraceptive pills. J Pediatr Adolesc Gynecol 2007;20:345–51. https://doi.org/10.1016/j.jpag.2007.06.001.Search in Google Scholar
32. Maheux-Lacroix, S, Leboeuf, M, Dufresne, A, Dodin, S. Adolescents’ willingness to use the contraceptive vaginal ring. J Obstet Gynaecol Can 2011;33:353–60. https://doi.org/10.1016/s1701-2163(16)34853-8.Search in Google Scholar
33. Gill, K, Happel, AU, Pidwell, T, Mendelsohn, A, Duyver, M, Johnson, L, et al.. An open-label, randomized crossover study to evaluate the acceptability and preference for contraceptive options in female adolescents, 15 to 19 years of age in Cape Town, as a proxy for HIV prevention methods (UChoose). J Int AIDS Soc 2020;23: e25626. https://doi.org/10.1002/jia2.25626.Search in Google Scholar
34. Miller, L, Verhoeven, CH, Hout, J. Extended regimens of the contraceptive vaginal ring: a randomized trial. Obstet Gynecol 2005;106:473–82. https://doi.org/10.1097/01.aog.0000175144.08035.74.Search in Google Scholar
35. American College of Obstetricians and Gynecologists (ACOG). Gynecologic management of adolescents and young women with seizure disorders: ACOG committee opinion, number 806. Obstet Gynecol 2020;135:e213–e20. https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2020/05/gynecologic-management-of-adolescents-and-young-women-with-seizure-disorders.10.1097/AOG.0000000000003827Search in Google Scholar
36. Riggs, BL. The mechanisms of estrogen regulation of bone resorption. J Clin Invest 2000;106:1203–4. https://doi.org/10.1172/jci11468.Search in Google Scholar
37. Seifert-Klauss, V, Prior, JC. Progesterone and bone: actions promoting bone health in women. J Osteoporos 2010;2010:845180. https://doi.org/10.4061/2010/845180.Search in Google Scholar
38. Kuohung, W, Borgatta, L, Stubblefield, P. Low-dose oral contraceptives and bone mineral density: an evidence-based analysis. Contraception 2000;61:77–82. https://doi.org/10.1016/s0010-7824(00)00086-x.Search in Google Scholar
39. Weaver, CM, Gordon, CM, Janz, KF, Kalkwarf, HJ, Lappe, JM, Lewis, R, et al.. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 2016;27:1281–386. https://doi.org/10.1007/s00198-015-3440-3.Search in Google Scholar PubMed PubMed Central
40. Bachrach, LK. Hormonal contraception and bone health in adolescents. Front Endocrinol 2020;11:603. https://doi.org/10.3389/fendo.2020.00603.Search in Google Scholar PubMed PubMed Central
41. Golden, NH. Bones and birth control in adolescent girls. J Pediatr Adolesc Gynecol 2020;33:249–54. https://doi.org/10.1016/j.jpag.2020.01.003.Search in Google Scholar PubMed
42. Southmayd, EA, De Souza, MJ. A summary of the influence of exogenous estrogen administration across the lifespan on the GH/IGF-1 axis and implications for bone health. Growth Horm IGF Res 2017;32:2–13. https://doi.org/10.1016/j.ghir.2016.09.001.Search in Google Scholar PubMed
43. Herrmann, M, Seibel, MJ. The effects of hormonal contraceptives on bone turnover markers and bone health. Clin Endocrinol 2010;72:571–83. https://doi.org/10.1111/j.1365-2265.2009.03688.x.Search in Google Scholar PubMed
44. Hartard, M, Kleinmond, C, Wiseman, M, Weissenbacher, ER, Felsenberg, D, Erben, RG. Detrimental effect of oral contraceptives on parameters of bone mass and geometry in a cohort of 248 young women. Bone 2007;40:444–50. https://doi.org/10.1016/j.bone.2006.08.001.Search in Google Scholar PubMed
45. Pikkarainen, E, Lehtonen-Veromaa, M, Mottonen, T, Kautiainen, H, Viikari, J. Estrogen-progestin contraceptive use during adolescence prevents bone mass acquisition: a 4-year follow-up study. Contraception 2008;78:226–31. https://doi.org/10.1016/j.contraception.2008.05.002.Search in Google Scholar PubMed
46. Brajic, TS, Berger, C, Schlammerl, K, Macdonald, H, Kalyan, S, Hanley, DA, et al.. Combined hormonal contraceptives use and bone mineral density changes in adolescent and young women in a prospective population-based Canada-wide observational study. J Musculoskelet Neuronal Interact 2018;18:227–36.Search in Google Scholar
47. Agostino, H, Di Meglio, G. Low-dose oral contraceptives in adolescents: how low can you go? J Pediatr Adolesc Gynecol 2010;23:195–201. https://doi.org/10.1016/j.jpag.2009.11.001.Search in Google Scholar PubMed
48. Biason, TP, Goldberg, TB, Kurokawa, CS, Moretto, MR, Teixeira, AS, Nunes, HR. Low-dose combined oral contraceptive use is associated with lower bone mineral content variation in adolescents over a 1-year period. BMC Endocr Disord 2015;15:15. https://doi.org/10.1186/s12902-015-0012-7.Search in Google Scholar PubMed PubMed Central
49. Cibula, D, Skrenkova, J, Hill, M, Stepan, JJ. Low-dose estrogen combined oral contraceptives may negatively influence physiological bone mineral density acquisition during adolescence. Eur J Endocrinol 2012;166:1003–11. https://doi.org/10.1530/eje-11-1047.Search in Google Scholar
50. Gersten, J, Hsieh, J, Weiss, H, Ricciotti, NA. Effect of extended 30 mug ethinyl estradiol with continuous low-dose ethinyl estradiol and cyclic 20 mug ethinyl estradiol oral contraception on adolescent bone density: a randomized trial. J Pediatr Adolesc Gynecol 2016;29:635–42. https://doi.org/10.1016/j.jpag.2016.05.012.Search in Google Scholar PubMed
51. Lopez, LM, Grimes, DA, Schulz, KF, Curtis, KM, Chen, M. Steroidal contraceptives: effect on bone fractures in women. Cochrane Database Syst Rev 2014;6:CD006033. https://doi.org/10.1002/14651858.CD006033.pub5.Search in Google Scholar PubMed
52. Goshtasebi, A, Subotic Brajic, T, Scholes, D, Beres Lederer Goldberg, T, Berenson, A, Prior, JC. Adolescent use of combined hormonal contraception and peak bone mineral density accrual: a meta-analysis of international prospective controlled studies. Clin Endocrinol 2019;90:517–24. https://doi.org/10.1111/cen.13932.Search in Google Scholar PubMed PubMed Central
53. Li, Z, Chines, AA, Meredith, MP. Statistical validation of surrogate endpoints: is bone density a valid surrogate for fracture? J Musculoskelet Neuronal Interact 2004;4:64–74.Search in Google Scholar
54. Barad, D, Kooperberg, C, Wactawski-Wende, J, Liu, J, Hendrix, SL, Watts, NB. Prior oral contraception and postmenopausal fracture: a Women’s Health Initiative observational cohort study. Fertil Steril 2005;84:374–83. https://doi.org/10.1016/j.fertnstert.2005.01.132.Search in Google Scholar PubMed
55. Vestergaard, P, Rejnmark, L, Mosekilde, L. Fracture risk in very young women using combined oral contraceptives. Contraception 2008;78:358–64. https://doi.org/10.1016/j.contraception.2008.06.010.Search in Google Scholar PubMed
56. Lopez, LM, Chen, M, Mullins, S, Curtis, KM, Helmerhorst, FM. Steroidal contraceptives and bone fractures in women: evidence from observational studies. Cochrane Database Syst Rev 2012;8:CD009849. https://doi.org/10.1002/14651858.CD009849.pub2.Search in Google Scholar PubMed
57. Lopez, LM, Grimes, DA, Schulz, KF, Curtis, KM. Steroidal contraceptives: effect on bone fractures in women. Cochrane Database Syst Rev 2011;7:CD006033. https://doi.org/10.1002/14651858.CD006033.pub2.Search in Google Scholar PubMed
58. Dombrowski, S, Jacob, L, Hadji, P, Kostev, K. Oral contraceptive use and fracture risk-a retrospective study of 12,970 women in the UK. Osteoporos Int 2017;28:2349–55. https://doi.org/10.1007/s00198-017-4036-x.Search in Google Scholar PubMed
59. Blackmore, KM, Wong, J, Knight, JA. A cross-sectional study of different patterns of oral contraceptive use among premenopausal women and circulating IGF-1: implications for disease risk. BMC Wom Health 2011;11:15. https://doi.org/10.1186/1472-6874-11-15.Search in Google Scholar PubMed PubMed Central
60. Harel, Z, Riggs, S, Vaz, R, Flanagan, P, Harel, D, Machan, JT. Bone accretion in adolescents using the combined estrogen and progestin transdermal contraceptive method Ortho Evra: a pilot study. J Pediatr Adolesc Gynecol 2010;23:23–31. https://doi.org/10.1016/j.jpag.2009.04.008.Search in Google Scholar PubMed
61. Ackerman, KE, Singhal, V, Baskaran, C, Slattery, M, Campoverde Reyes, KJ, Toth, A, et al.. Oestrogen replacement improves bone mineral density in oligo-amenorrhoeic athletes: a randomised clinical trial. Br J Sports Med 2019;53:229–36. https://doi.org/10.1136/bjsports-2018-099723.Search in Google Scholar PubMed PubMed Central
62. Misra, M, Katzman, D, Miller, KK, Mendes, N, Snelgrove, D, Russell, M, et al.. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res 2011;26:2430–8. https://doi.org/10.1002/jbmr.447.Search in Google Scholar PubMed PubMed Central
63. Massai, R, Makarainen, L, Kuukankorpi, A, Klipping, C, Duijkers, I, Dieben, T. The combined contraceptive vaginal ring and bone mineral density in healthy pre-menopausal women. Hum Reprod 2005;20:2764–8. https://doi.org/10.1093/humrep/dei117.Search in Google Scholar PubMed
64. Massaro, M, Di Carlo, C, Gargano, V, Formisano, C, Bifulco, G, Nappi, C. Effects of the contraceptive patch and the vaginal ring on bone metabolism and bone mineral density: a prospective, controlled, randomized study. Contraception 2010;81:209–14. https://doi.org/10.1016/j.contraception.2009.09.011.Search in Google Scholar PubMed
65. Nappi, C, Bifulco, G, Tommaselli, GA, Gargano, V, Di Carlo, C. Hormonal contraception and bone metabolism: a systematic review. Contraception 2012;86:606–21. https://doi.org/10.1016/j.contraception.2012.04.009.Search in Google Scholar PubMed
66. Beksinska, ME, Smit, JA, Kleinschmidt, I, Milford, C, Farley, TM. Prospective study of weight change in new adolescent users of DMPA, NET-EN, COCs, nonusers and discontinuers of hormonal contraception. Contraception 2010;81:30–4. https://doi.org/10.1016/j.contraception.2009.07.007.Search in Google Scholar PubMed PubMed Central
67. Gallo, MF, Lopez, LM, Grimes, DA, Carayon, F, Schulz, KF, Helmerhorst, FM. Combination contraceptives: effects on weight. Cochrane Database Syst Rev 2014:CD003987. https://doi.org/10.1002/14651858.CD003987.pub5.Search in Google Scholar PubMed
68. de Bastos, M, Stegeman, BH, Rosendaal, FR, Van Hylckama Vlieg, A, Helmerhorst, FM, Stijnen, T, et al.. Combined oral contraceptives: venous thrombosis. Cochrane Database Syst Rev 2014:CD010813. https://doi.org/10.1002/14651858.CD010813.pub2.Search in Google Scholar PubMed
69. Committee on Gynecologic Practice. ACOG Committee Opinion Number 540: risk of venous thromboembolism among users of drospirenone-containing oral contraceptive pills. Obstet Gynecol 2012;120:1239–42. https://doi.org/10.1097/aog.0b013e318277c93b.Search in Google Scholar PubMed
70. Dragoman, MV, Tepper, NK, Fu, R, Curtis, KM, Chou, R, Gaffield, ME. A systematic review and meta-analysis of venous thrombosis risk among users of combined oral contraception. Int J Gynaecol Obstet 2018;141:287–94. https://doi.org/10.1002/ijgo.12455.Search in Google Scholar PubMed PubMed Central
71. Practice Committee of the American Society for Reproductive Medicine. Electronic address Aao, Practice Committee of the American Society for Reproductive M. Combined hormonal contraception and the risk of venous thromboembolism: a guideline. Fertil Steril 2017;107:43–51. https://doi.org/10.1016/j.fertnstert.2016.09.027.Search in Google Scholar PubMed
72. Woods, GM, Kerlin, BA, O’Brien, SH, Bonny, AE. A review of hormonal contraception and venous thromboembolism in adolescents. J Pediatr Adolesc Gynecol 2016;29:402–8. https://doi.org/10.1016/j.jpag.2015.05.007.Search in Google Scholar PubMed
73. Shoupe, D. The Progestin Revolution: progestins are arising as the dominant players in the tight interlink between contraceptives and bleeding control. Contracept Reprod Med 2021;6:3. https://doi.org/10.1186/s40834-020-00142-5.Search in Google Scholar
74. Hall, KS, Trussell, J, Schwarz, EB. Progestin-only contraceptive pill use among women in the United States. Contraception 2012;86:653–8. https://doi.org/10.1016/j.contraception.2012.05.003.Search in Google Scholar
75. Tepper, NK, Whiteman, MK, Marchbanks, PA, James, AH, Curtis, KM. Progestin-only contraception and thromboembolism: a systematic review. Contraception 2016;94:678–700. https://doi.org/10.1016/j.contraception.2016.04.014.Search in Google Scholar
76. Broome, M, Fotherby, K. Clinical experience with the progestogen-only pill. Contraception 1990;42:489–95. https://doi.org/10.1016/0010-7824(90)90077-9.Search in Google Scholar
77. McCann, MF, Potter, LS. Progestin-only oral contraception: a comprehensive review. Contraception 1994;50:S1–195. https://doi.org/10.1016/0010-7824(94)90120-1.Search in Google Scholar
78. Hillard, PA. Menstrual suppression: current perspectives. Int J Wom Health 2014;6:631–7. https://doi.org/10.2147/ijwh.s46680.Search in Google Scholar PubMed PubMed Central
79. Pradhan, S, Gomez-Lobo, V. Hormonal contraceptives, IUDs, GnRH analogues and testosterone: menstrual suppression in special adolescent populations. J Pediatr Adolesc Gynecol 2019;32:S23-9. https://doi.org/10.1016/j.jpag.2019.04.007.Search in Google Scholar PubMed
80. Kaser, DJ, Missmer, SA, Berry, KF, Laufer, MR. Use of norethindrone acetate alone for postoperative suppression of endometriosis symptoms. J Pediatr Adolesc Gynecol 2012;25:105–8. https://doi.org/10.1016/j.jpag.2011.09.013.Search in Google Scholar PubMed
81. Sarfati, J, de Vernejoul, MC. Impact of combined and progestogen-only contraceptives on bone mineral density. Joint Bone Spine 2009;76:134–8. https://doi.org/10.1016/j.jbspin.2008.09.014.Search in Google Scholar PubMed
82. Raine-Bennett, T, Chandra, M, Armstrong, MA, Alexeeff, S, Lo, JC. Depot medroxyprogesterone acetate, oral contraceptive, intrauterine device use, and fracture risk. Obstet Gynecol 2019;134:581–9. https://doi.org/10.1097/aog.0000000000003414.Search in Google Scholar PubMed
83. Mainwaring, R, Hales, HA, Stevenson, K, Hatasaka, HH, Poulson, AM, Jones, KP, et al.. Metabolic parameter, bleeding, and weight changes in U.S. women using progestin only contraceptives. Contraception 1995;51:149–53. https://doi.org/10.1016/0010-7824(95)00011-x.Search in Google Scholar
84. Speroff, LD, Philip, D. A clinical guide for contraception. Philadelphia, PA: Lippincott Williams & Wilkins; 2010.Search in Google Scholar
85. Worly, BL, Gur, TL, Schaffir, J. The relationship between progestin hormonal contraception and depression: a systematic review. Contraception 2018;97:478–89. https://doi.org/10.1016/j.contraception.2018.01.010.Search in Google Scholar PubMed
86. Winner, B, Peipert, JF, Zhao, Q, Buckel, C, Madden, T, Allsworth, JE, et al.. Effectiveness of long-acting reversible contraception. N Engl J Med 2012;366:1998–2007. https://doi.org/10.1056/nejmoa1110855.Search in Google Scholar PubMed
87. Zigler, RE, McNicholas, C. Unscheduled vaginal bleeding with progestin-only contraceptive use. Am J Obstet Gynecol 2017;216:443–50. https://doi.org/10.1016/j.ajog.2016.12.008.Search in Google Scholar PubMed
88. Arias, RD, Jain, JK, Brucker, C, Ross, D, Ray, A. Changes in bleeding patterns with depot medroxyprogesterone acetate subcutaneous injection 104 mg. Contraception 2006;74:234–8. https://doi.org/10.1016/j.contraception.2006.03.008.Search in Google Scholar PubMed
89. Hubacher, D, Lopez, L, Steiner, MJ, Dorflinger, L. Menstrual pattern changes from levonorgestrel subdermal implants and DMPA: systematic review and evidence-based comparisons. Contraception 2009;80:113–8. https://doi.org/10.1016/j.contraception.2009.02.008.Search in Google Scholar PubMed
90. Fritz, M, Speroff, L. Long-acting methods of contraception. In: Fritz, M, Speroff, L, editors. Clinical Gynecologic Endocrinology and Infertility, 8th ed. Philadelphia, PA: Wolters Kluwer; 2011:1059–93 pp.Search in Google Scholar
91. Obijuru, L, Bumpus, S, Auinger, P, Baldwin, CD. Etonogestrel implants in adolescents: experience, satisfaction, and continuation. J Adolesc Health 2016;58:284–9. https://doi.org/10.1016/j.jadohealth.2015.10.254.Search in Google Scholar PubMed
92. Villavicencio, J, Allen, RH. Unscheduled bleeding and contraceptive choice: increasing satisfaction and continuation rates. Open Access J Contracept 2016;7:43–52. https://doi.org/10.2147/OAJC.S85565.Search in Google Scholar PubMed PubMed Central
93. Walsh, JS, Eastell, R, Peel, NF. Effects of Depot medroxyprogesterone acetate on bone density and bone metabolism before and after peak bone mass: a case-control study. J Clin Endocrinol Metab 2008;93:1317–23. https://doi.org/10.1210/jc.2007-2201.Search in Google Scholar PubMed
94. Lara-Torre, E, Edwards, CP, Perlman, S, Hertweck, SP. Bone mineral density in adolescent females using depot medroxyprogesterone acetate. J Pediatr Adolesc Gynecol 2004;17:17–21. https://doi.org/10.1016/j.jpag.2003.11.017.Search in Google Scholar PubMed
95. Busen, NH, Britt, RB, Rianon, N. Bone mineral density in a cohort of adolescent women using depot medroxyprogesterone acetate for one to two years. J Adolesc Health 2003;32:257–9. https://doi.org/10.1016/s1054-139x(02)00567-0.Search in Google Scholar
96. Cromer, BA. Bone mineral density in adolescent and young adult women on injectable or oral contraception. Curr Opin Obstet Gynecol 2003;15:353–7. https://doi.org/10.1097/00001703-200310000-00002.Search in Google Scholar
97. Cromer, BA, Blair, JM, Mahan, JD, Zibners, L, Naumovski, Z. A prospective comparison of bone density in adolescent girls receiving depot medroxyprogesterone acetate (Depo-Provera), levonorgestrel (Norplant), or oral contraceptives. J Pediatr 1996;129:671–6. https://doi.org/10.1016/s0022-3476(96)70148-8.Search in Google Scholar
98. Gai, L, Zhang, J, Zhang, H, Gai, P, Zhou, L, Liu, Y. The effect of depot medroxyprogesterone acetate (DMPA) on bone mineral density (BMD) and evaluating changes in BMD after discontinuation of DMPA in Chinese women of reproductive age. Contraception 2011;83:218–22. https://doi.org/10.1016/j.contraception.2010.07.027.Search in Google Scholar PubMed
99. Pitts, SA, Feldman, HA, Dorale, A, Gordon, CM. Bone mineral density, fracture, and vitamin D in adolescents and young women using depot medroxyprogesterone acetate. J Pediatr Adolesc Gynecol 2012;25:23–6. https://doi.org/10.1016/j.jpag.2011.07.014.Search in Google Scholar PubMed
100. Lange, HL, Manos, BE, Gothard, MD, Rogers, LK, Bonny, AE. Bone mineral density and weight changes in adolescents randomized to 3 doses of depot medroxyprogesterone acetate. J Pediatr Adolesc Gynecol 2017;30:169–75. https://doi.org/10.1016/j.jpag.2016.10.011.Search in Google Scholar PubMed
101. Clark, MK, Sowers, M, Levy, B, Nichols, S. Bone mineral density loss and recovery during 48 months in first-time users of depot medroxyprogesterone acetate. Fertil Steril 2006;86:1466–74. https://doi.org/10.1016/j.fertnstert.2006.05.024.Search in Google Scholar PubMed
102. Babatunde, OO, Forsyth, JJ. Association between depot medroxyprogesterone acetate (DMPA), physical activity and bone health. J Bone Miner Metab 2014;32:305–11. https://doi.org/10.1007/s00774-013-0497-y.Search in Google Scholar PubMed
103. Nieves, JW, Ruffing, JA, Zion, M, Tendy, S, Yavorek, T, Lindsay, R, et al.. Eating disorders, menstrual dysfunction, weight change and DMPA use predict bone density change in college-aged women. Bone 2016;84:113–9. https://doi.org/10.1016/j.bone.2015.12.054.Search in Google Scholar PubMed
104. Scholes, D, LaCroix, AZ, Ichikawa, LE, Barlow, WE, Ott, SM. Change in bone mineral density among adolescent women using and discontinuing depot medroxyprogesterone acetate contraception. Arch Pediatr Adolesc Med 2005;159:139–44. https://doi.org/10.1001/archpedi.159.2.139.Search in Google Scholar PubMed
105. Harel, Z, Johnson, CC, Gold, MA, Cromer, B, Peterson, E, Burkman, R, et al.. Recovery of bone mineral density in adolescents following the use of depot medroxyprogesterone acetate contraceptive injections. Contraception 2010;81:281–91. https://doi.org/10.1016/j.contraception.2009.11.003.Search in Google Scholar
106. Committee Opinion No. 602. Depot medroxyprogesterone acetate and bone effects. Obstet Gynecol 2014;123:1398–402. https://doi.org/10.1097/01.AOG.0000450758.95422.c8.Search in Google Scholar
107. Makarainen, L, van Beek, A, Tuomivaara, L, Asplund, B, Coelingh Bennink, H. Ovarian function during the use of a single contraceptive implant: implanon compared with Norplant. Fertil Steril 1998;69:714–21. https://doi.org/10.1016/s0015-0282(98)00015-6.Search in Google Scholar
108. Modesto, W, Dal Ava, N, Monteiro, I, Bahamondes, L. Body composition and bone mineral density in users of the etonogestrel-releasing contraceptive implant. Arch Gynecol Obstet 2015;292:1387–91. https://doi.org/10.1007/s00404-015-3784-0.Search in Google Scholar PubMed
109. Beerthuizen, R, van Beek, A, Massai, R, Makarainen, L, Hout, J, Bennink, HC. Bone mineral density during long-term use of the progestagen contraceptive implant Implanon compared to a non-hormonal method of contraception. Hum Reprod 2000;15:118–22. https://doi.org/10.1093/humrep/15.1.118.Search in Google Scholar PubMed
110. Pongsatha, S, Ekmahachai, M, Suntornlimsiri, N, Morakote, N, Chaovisitsaree, S. Bone mineral density in women using the subdermal contraceptive implant Implanon for at least 2 years. Int J Gynaecol Obstet 2010;109:223–5. https://doi.org/10.1016/j.ijgo.2010.01.018.Search in Google Scholar PubMed
111. Depot Provera CI. [Drug Inser]. New York, NY: Pfizer Pharmacia and Upjohn Co.; 2017.Search in Google Scholar
112. American Academy of Pediatrics (AAP). Contraception for adolescents. Pediatrics 2014;134:e1244-56. https://doi.org/10.1542/peds.2014-2299.Search in Google Scholar PubMed
113. ACOG Committee Opinion No. 735. Adolescents and long-acting reversible contraception: implants and intrauterine devices. Obstet Gynecol 2018;131:e130–e9. https://doi.org/10.1097/AOG.0000000000002632.Search in Google Scholar PubMed
114. Lohr, PA, Lyus, R, Prager, S. Use of intrauterine devices in nulliparous women. Contraception 2017;95:529–37. https://doi.org/10.1016/j.contraception.2016.08.011.Search in Google Scholar PubMed
115. Pradhan, S, Gomez-Lobo, V. Hormonal contraceptives, intrauterine devices, gonadotropin-releasing hormone analogues and testosterone: menstrual suppression in special adolescent populations. J Pediatr Adolesc Gynecol 2019;32:S23–9. https://doi.org/10.1016/j.jpag.2019.04.007.Search in Google Scholar PubMed
116. Leeks, R, Bartley, C, O’Brien, B, Bagchi, T, Kimble, RMN. Menstrual suppression in pediatric and adolescent patients with disabilities ranging from developmental to acquired conditions: a population study in an Australian quaternary pediatric and adolescent gynecology service from January 2005 to December 2015. J Pediatr Adolesc Gynecol 2019;32:535–40. https://doi.org/10.1016/j.jpag.2019.05.005.Search in Google Scholar PubMed
117. Schwartz, BI, Alexander, M, Breech, LL. Intrauterine device use in adolescents with disabilities. Pediatrics 2020;146. https://doi.org/10.1542/peds.2020-0016.Search in Google Scholar PubMed
118. Black, A, Guilbert, E, Costescu, D, Dunn, S, Fisher, W, Kives, S, et al.. Canadian contraception consensus (Part 3 of 4): chapter 7--intrauterine contraception. J Obstet Gynaecol Can 2016;38:182–222. https://doi.org/10.1016/j.jogc.2015.12.002.Search in Google Scholar PubMed
119. Andersson, JK, Rybo, G. Levonorgestrel-releasing intrauterine device in the treatment of menorrhagia. Br J Obstet Gynaecol 1990;97:690–4. https://doi.org/10.1111/j.1471-0528.1990.tb16240.x.Search in Google Scholar PubMed
120. Jensen, J, Mansour, D, Lukkari-Lax, E, Inki, P, Burock, K, Fraser, IS. Bleeding patterns with the levonorgestrel-releasing intrauterine system when used for heavy menstrual bleeding in women without structural pelvic pathology: a pooled analysis of randomized controlled studies. Contraception 2013;87:107–12. https://doi.org/10.1016/j.contraception.2012.08.022.Search in Google Scholar PubMed
121. Heikinheimo, O, Inki, P, Schmelter, T, Gemzell-Danielsson, K. Bleeding pattern and user satisfaction in second consecutive levonorgestrel-releasing intrauterine system users: results of a prospective 5-year study. Hum Reprod 2014;29:1182–8. https://doi.org/10.1093/humrep/deu063.Search in Google Scholar PubMed PubMed Central
122. Sergison, JE, Maldonado, LY, Gao, X, Hubacher, D. Levonorgestrel intrauterine system associated amenorrhea: a systematic review and metaanalysis. Am J Obstet Gynecol 2019;220:440–8. https://doi.org/10.1016/j.ajog.2018.12.008.Search in Google Scholar PubMed PubMed Central
123. Gemzell-Danielsson, K, Schellschmidt, I, Apter, D. A randomized, phase II study describing the efficacy, bleeding profile, and safety of two low-dose levonorgestrel-releasing intrauterine contraceptive systems and Mirena. Fertil Steril 2012;97:616–22 e1-3. https://doi.org/10.1016/j.fertnstert.2011.12.003.Search in Google Scholar PubMed
124. Parks, MA, Zwayne, N, Temkit, M. Bleeding patterns among adolescents using the levonorgestrel intrauterine device: a single institution review. J Pediatr Adolesc Gynecol 2020;33:555–8. https://doi.org/10.1016/j.jpag.2020.04.006.Search in Google Scholar PubMed
125. Apter, D, Gemzell-Danielsson, K, Hauck, B, Rosen, K, Zurth, C. Pharmacokinetics of two low-dose levonorgestrel-releasing intrauterine systems and effects on ovulation rate and cervical function: pooled analyses of phase II and III studies. Fertil Steril 2014;101:1656–62.e1-4. https://doi.org/10.1016/j.fertnstert.2014.03.004.Search in Google Scholar PubMed
126. Nelson, A, Apter, D, Hauck, B, Schmelter, T, Rybowski, S, Rosen, K, et al.. Two low-dose levonorgestrel intrauterine contraceptive systems: a randomized controlled trial. Obstet Gynecol 2013;122:1205–13. https://doi.org/10.1097/aog.0000000000000019.Search in Google Scholar
127. Bahamondes, MV, Monteiro, I, Castro, S, Espejo-Arce, X, Bahamondes, L. Prospective study of the forearm bone mineral density of long-term users of the levonorgestrel-releasing intrauterine system. Hum Reprod 2010;25:1158–64. https://doi.org/10.1093/humrep/deq043.Search in Google Scholar PubMed
128. Yang, KY, Kim, YS, Ji, YI, Jung, MH. Changes in bone mineral density of users of the levonorgestrel-releasing intrauterine system. J Nippon Med Sch 2012;79:190–4. https://doi.org/10.1272/jnms.79.190.Search in Google Scholar PubMed
129. van Hylckama Vlieg, A, Helmerhorst, FM, Rosendaal, FR. The risk of deep venous thrombosis associated with injectable depot-medroxyprogesterone acetate contraceptives or a levonorgestrel intrauterine device. Arterioscler Thromb Vasc Biol 2010;30:2297–300. https://doi.org/10.1161/atvbaha.110.211482.Search in Google Scholar PubMed
130. American College of O, Gynecologists’ Committee on Adolescent Health C. Committee Opinion No. 668: Menstrual manipulation for adolescents with physical and developmental disabilities. Obstet Gynecol 2016;128:e20–5. https://doi.org/10.1097/AOG.0000000000001585.Search in Google Scholar PubMed
131. Acharya, K, Lantos, JD. Considering decision-making and sexuality in menstrual suppression of teens and young adults with intellectual disabilities. AMA J Ethics 2016;18:365–72. https://doi.org/10.1001/journalofethics.2016.18.4.ecas2-1604.Search in Google Scholar PubMed
132. Burgart, AM, Strickland, J, Davis, D, Baratz, AB, Karkazis, K, Lantos, JD. Ethical controversy about hysterectomy for a minor. Pediatrics 2017;139. https://doi.org/10.1542/peds.2016-3992.Search in Google Scholar PubMed
133. Quint, EH, O’Brien, RF, Committee On A, North American Society for Pediatric and Adolescent Gynecology. Menstrual management for adolescents with disabilities. Pediatrics 2016;138. https://doi.org/10.1542/peds.2016-0295.Search in Google Scholar PubMed
134. Reilly, PR. Eugenics and involuntary sterilization: 1907-2015. Annu Rev Genomics Hum Genet 2015;16:351–68. https://doi.org/10.1146/annurev-genom-090314-024930.Search in Google Scholar PubMed
135. Sterilization of minors with developmental disabilities. American Academy of pediatrics. Committee on Bioethics. Pediatrics. 1999;104:337-40.10.1542/peds.104.2.337Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- An endocrine perspective on menstrual suppression for adolescents: achieving good suppression while optimizing bone health
- Original Articles
- Anthropometric, metabolic, and reproductive outcomes of patients with central precocious puberty treated with leuprorelin acetate 3-month depot (11.25 mg)
- Evaluation of the resilience of the girls with central precocious puberty treated with gonadotropin-releasing hormone analog
- The effect of GnRH stimulation on AMH regulation in central precocious puberty and isolated premature thelarche
- Association of the apoptotic marker APO1/Fas with children’s predisposing factors for metabolic syndrome and with mean platelet volume
- Serum adiponectin, body adiposity and metabolic parameters in obese Egyptian children with Down syndrome
- Urinary iodine and thyroglobulin are useful markers in infants suspected of congenital hypothyroidism based on newborn screening
- Comparison of plasmapheresis with medical apheresis in terms of efficacy and cost in the acute treatment of hypertriglyceridemia in children with lipoprotein lipase deficiency
- Clinical, biochemical and genotypical characteristics in biotinidase deficiency
- High uric acid levels in overweight and obese children and their relationship with cardiometabolic risk factors: what is missing in this puzzle?
- Optimizing pediatric histrelin implantation to improve success rates in clinic without sedation
- Determinants of ultra-processed food consumption in Brazilian children and adolescents with type 1 diabetes mellitus: a cross-sectional study
- The prevalence, immune profile, and clinical characteristics of children with celiac disease and type 1 diabetes mellitus in the state of Qatar
- Case Reports
- A rare and preventable aetiology of neurodevelopmental delay and epilepsy: familial glucocorticoid deficiency
- Giant plurihormonal pituitary adenoma in a child – case study
- The usefulness of copeptin for the diagnosis of nephrogenic diabetes insipidus in infancy: a case report
- A novel synonymous homozygous variant [c.2538G>A (p.Thr846Thr)] in TRPM6 in a patient with hypomagnesemia with secondary hypocalcemia
- Idiopathic juvenile osteoporosis in a child: a four-year follow-up with review of literature
Articles in the same Issue
- Frontmatter
- Review Article
- An endocrine perspective on menstrual suppression for adolescents: achieving good suppression while optimizing bone health
- Original Articles
- Anthropometric, metabolic, and reproductive outcomes of patients with central precocious puberty treated with leuprorelin acetate 3-month depot (11.25 mg)
- Evaluation of the resilience of the girls with central precocious puberty treated with gonadotropin-releasing hormone analog
- The effect of GnRH stimulation on AMH regulation in central precocious puberty and isolated premature thelarche
- Association of the apoptotic marker APO1/Fas with children’s predisposing factors for metabolic syndrome and with mean platelet volume
- Serum adiponectin, body adiposity and metabolic parameters in obese Egyptian children with Down syndrome
- Urinary iodine and thyroglobulin are useful markers in infants suspected of congenital hypothyroidism based on newborn screening
- Comparison of plasmapheresis with medical apheresis in terms of efficacy and cost in the acute treatment of hypertriglyceridemia in children with lipoprotein lipase deficiency
- Clinical, biochemical and genotypical characteristics in biotinidase deficiency
- High uric acid levels in overweight and obese children and their relationship with cardiometabolic risk factors: what is missing in this puzzle?
- Optimizing pediatric histrelin implantation to improve success rates in clinic without sedation
- Determinants of ultra-processed food consumption in Brazilian children and adolescents with type 1 diabetes mellitus: a cross-sectional study
- The prevalence, immune profile, and clinical characteristics of children with celiac disease and type 1 diabetes mellitus in the state of Qatar
- Case Reports
- A rare and preventable aetiology of neurodevelopmental delay and epilepsy: familial glucocorticoid deficiency
- Giant plurihormonal pituitary adenoma in a child – case study
- The usefulness of copeptin for the diagnosis of nephrogenic diabetes insipidus in infancy: a case report
- A novel synonymous homozygous variant [c.2538G>A (p.Thr846Thr)] in TRPM6 in a patient with hypomagnesemia with secondary hypocalcemia
- Idiopathic juvenile osteoporosis in a child: a four-year follow-up with review of literature