Startseite Personalized precision medicine in extreme preterm infants with transient neonatal diabetes mellitus
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Personalized precision medicine in extreme preterm infants with transient neonatal diabetes mellitus

  • Ranjit I. Kylat EMAIL logo , Rajan Senguttuvan und Mohammed Y. Bader
Veröffentlicht/Copyright: 28. März 2017

Abstract

Although hyperglycemia is common in neonates, especially preterm infants, a diagnosis of neonatal diabetes mellitus (NDM) is rarely made. NDM can be permanent (45%), transient (45%) or syndromic (10%). Of the 95% of identifiable mutations for NDM, methylation defects in 6q24, KCNJ11, ABCC8, and INS account for the majority. Two cases of transient NDM in extremely preterm, 24 weeks’ gestational age (GA) triplets, due to a missense mutation c.685G>A in the KCNJ11 gene are presented. Both patients were successfully transitioned from insulin to Glyburide (Glibenclamide) at 2 months of age. Comprehensive genetic testing with targeted next-generation sequencing and 6q24 methylation analysis helps identify monogenic diabetes early, thereby improving metabolic and glycemic control when patients with potassium channel mutations are started on sulfonylurea (SU) treatment.


Corresponding author: Dr. Ranjit I. Kylat, MD, Division of Neonatal-Perinatal Medicine and Developmental Biology, Department of Pediatrics, University of Arizona, College of Medicine, PO Box 245073, 1501 N Campbell Avenue, Tucson, AZ 85724, USA, Phone: +1 5206266627, Fax: +5206265009

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

1. Polak M, Cavé H. Neonatal diabetes mellitus: a disease linked to multiple mechanisms. Orphanet J Rare Dis 2007;2:12.10.1186/1750-1172-2-12Suche in Google Scholar

2. De León DD, Stanley CA. Permanent neonatal diabetes mellitus. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle, 1993–2016. From http://www.ncbi.nlm.nih.gov/books/NBK1447Suche in Google Scholar

3. Temple IK, Mackay DJ, Docherty LE. Diabetes mellitus, 6q24-Related transient neonatal. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle, 1993–2016. Available from http://www.ncbi.nlm.nih.gov/books/NBK1534Suche in Google Scholar

4. Naylor RN, Greeley SA, Bell GI, Philipson LH. Genetics and pathophysiology of neonatal diabetes mellitus. J Diabetes Investig 2011;2:158–69.10.1111/j.2040-1124.2011.00106.xSuche in Google Scholar

5. Siklar Z, Ellard S, Okulu E, Berberoğlu M, Young E, et al. Transient neonatal diabetes with two novel mutations in the KCNJ11 gene and response to sulfonylurea treatment in a preterm infant. J Pediatr Endocrinol Metab 2011;24:1077–80.10.1515/JPEM.2011.250Suche in Google Scholar

6. Nishimaki S, Yukawa T, Makita Y, Honda H, Kikuchi N, et al. Transient neonatal diabetes mellitus in extremely preterm infant. Arch Dis Child Fetal Neonatal Ed. 2008;93:F240–1. Doi: 10.1136/adc.2007.12537710.1136/adc.2007.125377Suche in Google Scholar

7. Anderson de la Llana S, Klee P, Santoni F, Stekelenburg C, Blouin JL, et al. Gene variants associated with transient neonatal diabetes mellitus in the very low birth weight infant. Horm Res Paediatr 2015;84:283–8.10.1159/000437378Suche in Google Scholar

8. Globa E, Zelinska N, Mackay DJ, Temple KI, Houghton JA, et al. Neonatal diabetes in Ukraine: incidence, genetics, clinical phenotype and treatment. J Pediatr Endocrinol Metab 2015;28:1279–86.10.1515/jpem-2015-0170Suche in Google Scholar

9. Alkorta-Aranburu G, Sukhanova M, Carmody D, Hoffman T, Wysinger L, et al. Improved molecular diagnosis of patients with neonatal diabetes using a combined next-generation sequencing and MS-MLPA approach. J Pediatr Endocrinol Metab 2016;29:523–31.10.1515/jpem-2015-0341Suche in Google Scholar

10. De Franco E, Flanagan SE, Houghton JA, Lango Allen H, Mackay DJ, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet 2015;386:957–63. Doi: 10.1016/S0140-6736(15)60098-8.10.1016/S0140-6736(15)60098-8Suche in Google Scholar

11. Bonnefond A, Durand E, Sand O, De Graeve F, Gallina S, et al. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome. PLoS One 2010;5:e13630.10.1371/journal.pone.0013630Suche in Google Scholar PubMed PubMed Central

12. Bonnefond A, Philippe J, Durand E, Muller J, Saeed S, et al. Highly sensitive diagnosis of 43 monogenic forms of diabetes or obesity through one-step PCR-based enrichment in combination with next-generation sequencing. Diabetes Care 2014;37:460–7.10.2337/dc13-0698Suche in Google Scholar PubMed

13. Polak M. Diabetes mellitus, update. Arch Pediatr 2013; 20(Suppl 4):S109.10.1016/S0929-693X(13)71423-4Suche in Google Scholar

14. Pearson ER, Flechtner I, Njølstad PR, Malecki MT, Flanagan SE, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 2006;355:467–77.10.1056/NEJMoa061759Suche in Google Scholar

15. Busiah K, Auger J, Fauret-Amsellem AL, Dahan S, Pouvreau N, et al. Differentiating transient idiopathic hyperglycaemia and neonatal diabetes mellitus in preterm infants. Horm Res Paediatr 2015;84:68–72.10.1159/000381621Suche in Google Scholar

16. Mericq V. Prematurity and insulin sensitivity. Horm Res 2006;65(Suppl 3):131–6.10.1159/000091518Suche in Google Scholar

17. Mitanchez-Mokhtari D, Lahlou N, Kieffer F, Magny JF, Roger M, et al. Both relative insulin resistance and defective islet beta-cell processing of proinsulin are responsible for transient hyperglycemia in extremely preterm infants. Pediatrics 2004;113(3 Pt 1): 537–41.10.1542/peds.113.3.537Suche in Google Scholar

18. Sarici SU, Alpay F, Dündaryz MR, Gyknay E. Neonatal diabetes mellitus: patient report and review of the literature. J Pediatr Endocrinol Metab 2001;14:451–4.10.1515/JPEM.2001.14.4.451Suche in Google Scholar

19. Hicks KA, Kushner JA, Heptulla R, Ham JN. Permanent neonatal diabetes mellitus in monozygotic twins achieving low-dose sulfonylurea therapy. J Pediatr Endocrinol Metab 2014;27:135–8.10.1515/jpem-2013-0171Suche in Google Scholar

20. Carmody D, Bell CD, Hwang JL, Dickens JT, Sima DI, et al. Sulfonylurea treatment before genetic testing in neonatal diabetes: pros and cons. J Clin Endocrinol Metab 2014;99:E2709–14.10.1210/jc.2014-2494Suche in Google Scholar

21. Zhang M, Chen X, Shen S, Li T, Chen L, et al. Sulfonylurea in the treatment of neonatal diabetes mellitus children with heterogeneous genetic backgrounds. J Pediatr Endocrinol Metab 2015;28:877–84.10.1515/jpem-2014-0429Suche in Google Scholar

22. Busiah K, Drunat S, Vaivre-Douret L, Bonnefond A, Simon A, et al Neuropsychological dysfunction and developmental defects associated with genetic changes in infants with neonatal diabetes mellitus: a prospective cohort study [corrected]. Lancet Diabetes Endocrinol 2013;1:199–207.10.1016/S2213-8587(13)70059-7Suche in Google Scholar

23. Landmeier KA, Lanning M, Carmody D, Greeley SA, Msall ME. ADHD, learning difficulties and sleep disturbances associated with KCNJ11-related neonatal diabetes. Pediatr Diabetes 2016. [Epub ahead of print]10.1111/pedi.12428Suche in Google Scholar PubMed PubMed Central

24. Beltrand J, Elie C, Busiah K, Fournier E, Boddaert N, et al. Sulfonylurea therapy benefits neurological and psychomotor functions in patients with neonatal diabetes owing to potassium channel mutations. Diabetes Care 2015;38:2033–41.10.2337/dc15-0837Suche in Google Scholar PubMed

25. Lennon AS, Go M, Mahajan C, Parimi P. KCNJ11 Gene Mutation as a cause of Neonatal Hyperglycemia in an Extremely Low Birth Weight Premature Infant. Poster presented at The Endocrine Society 97th Annual Meeting, March 6, 2015, San Diego, USA.Suche in Google Scholar

26. Stelzner L, Seipolt B, Mögel M, Näke A, Rüdiger M. Transient neonatal diabetes in a newborn born at 27 weeks gestational age with known familiar KCNJ-11 mutation. Poster presented at 112th Anniversary of the German Society of Pediatrics and Adolescent Medicine (DGKJ), September 15, 2016, Hamburg, Germany.Suche in Google Scholar

27. Flanagan SE, Patch AM, Mackay DJ, Edghill EL, Gloyn AL, et al. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 2007;56:1930–7. Err in: Diabetes 2008;57:523.10.2337/db07-0043Suche in Google Scholar PubMed PubMed Central

28. Hattersley A, Bruining J, Shield J, Njolstad P, Donaghue KC. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 2009;10(Suppl 12):33–42. Doi: 10.1111/j.1399-5448.2009.00571.Doi: 10.1111/j.1399-5448.2009.00571.Suche in Google Scholar

29. Greeley SA, Tucker SE, Naylor RN, Bell GI, Philipson LH. Neonatal diabetes mellitus: a model for personalized medicine. Trends Endocrinol Metab 2010;21:464–72.10.1016/j.tem.2010.03.004Suche in Google Scholar PubMed PubMed Central

30. Vaxillaire M, Froguel P. Monogenic diabetes: Implementation of translational genomic research towards precision medicine. J Diabetes 2016;8:782–95.10.1111/1753-0407.12446Suche in Google Scholar PubMed

Received: 2016-7-14
Accepted: 2017-2-6
Published Online: 2017-3-28
Published in Print: 2017-5-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Review
  3. Imaging methods for bone mass evaluation during childhood and adolescence: an update
  4. Original Articles
  5. Risk factors for overweight and obesity in children aged 2–6 years
  6. Copy number variations in “classical” obesity candidate genes are not frequently associated with severe early-onset obesity in children
  7. Trends in the prevalence of extreme obesity among Korean children and adolescents from 2001 to 2014
  8. Plasma but not serum brain-derived neurotrophic factor concentration is decreased by oral glucose tolerance test-induced hyperglycemia in children
  9. Environmental and genetic determinants of two vitamin D metabolites in healthy Australian children
  10. Evaluation of vitamin D prophylaxis in 3–36-month-old infants and children
  11. Possible effects of neonatal vitamin B12 status on TSH-screening program: a cross-sectional study from Turkey
  12. Effects of L-thyroxine treatment on heart functions in infants with congenital hypothyroidism
  13. Hyperandrogenism in adolescent girls: relationship with the somatotrophic axis
  14. Plasma kisspeptin and ghrelin levels in puberty variant cases
  15. Genotype-phenotype correlation in paediatric pheochromocytoma and paraganglioma: a single centre experience from India
  16. Short Communication
  17. Provider variability in the initial diagnosis and treatment of congenital hypothyroidism
  18. Case Reports
  19. Giant parathyroid adenoma associated with severe hypercalcemia in an adolescent patient
  20. Personalized precision medicine in extreme preterm infants with transient neonatal diabetes mellitus
  21. Pseudohypoaldosteronism types I and II: little more than a name in common
  22. Primary pigmented nodular adrenocortical disease: literature review and case report of a 6-year-old boy
Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jpem-2016-0261/html
Button zum nach oben scrollen