Startseite Diabetes insipidus in children
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Diabetes insipidus in children

  • Vandana Jain EMAIL logo und Aathira Ravindranath
Veröffentlicht/Copyright: 3. September 2015

Abstract

Diabetes insipidus (DI) is one of the common disorders affecting sodium and water homeostasis, and results when ADH is either inadequately produced, or unable to negotiate its actions on the renal collecting tubules through aquaporins. The diagnostic algorithm starts with exclusion of other causes of polyuria and establishing low urine osmolality in the presence of high serum osmolality. In this paper, we have reviewed the diagnosis, etiology and management of DI in children, with special emphasis on recent advances in the field.


Corresponding author: Vandana Jain, Additional Professor, Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India, Phone: +91 9810167265, E-mail:

References

1. Lindholm J. Diabetes insipidus: historical aspects. Pituitary 2004;7:33–8.10.1023/B:PITU.0000044633.52516.e1Suche in Google Scholar

2. Kaplan LJ, Kellum JA. Fluids, pH, ions and electrolytes. Curr Opin Crit Care 2010;16:323–31.10.1097/MCC.0b013e32833c0957Suche in Google Scholar PubMed

3. Fitzsimons JT. Physiology and pathophysiology of thirst and sodium appetite. In: Seldin DW, Giebisch G, editors. The kidney. Physiology and Pathophysiology. New York: Raven Press, 1992:1615–48.Suche in Google Scholar

4. Thompson CJ, Bland J, Burd J, Baylis PH. The osmotic thresholds for thirst and vasopressin release are similar in healthy man. Clin Sci (Lond) 1986;71:651–6.10.1042/cs0710651Suche in Google Scholar PubMed

5. Barat C, Simpson L, Breslow E. Properties of human vasopressin precursor constructs: inefficient monomer folding in the absence of copeptin as a potential contributor to diabetes insipidus. Biochemistry 2004;43:8191–203.10.1021/bi0400094Suche in Google Scholar PubMed

6. Stricker EM, Verbalis JG. Water and salt intake and body fluid homeostasis. In: Squire LR, Berg D, Bloom FE, du Lac S, Ghosh A, et al. editors. Fundamental neuroscience, 4th ed. Waltham, MA: Academic Press, 2013:783–97.Suche in Google Scholar

7. Robertson GL. The regulation of vasopressin function in health and disease. Recent Prog Horm Res 1976;33:333–85.Suche in Google Scholar

8. De Mota N, Reaux-Le Goazigo A, El Messari S, Chartrel N, Roesch D, et al. Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci USA 2004;101:10464–9.10.1073/pnas.0403518101Suche in Google Scholar PubMed PubMed Central

9. Hus-Citharel A, Bodineau L, Frugière A, Joubert F, Bouby N, et al. Apelin counteracts vasopressin-induced water reabsorption via cross talk between apelin and vasopressin receptor signaling pathways in the rat collecting duct. Endocrinology 2014;155:4483−93.10.1210/en.2014-1257Suche in Google Scholar PubMed

10. Bodineau L, Hus-Citharel A, Llorens-Cortes C. Contribution of apelin to water balance, blood glucose control, and cardiovascular functions. Ann Endocrinol (Paris) 2010;71:249−56.10.1016/j.ando.2010.03.004Suche in Google Scholar PubMed

11. Knepper MA. Molecular physiology of urinary concentrating mechanism: regulation of aquaporin water channels by vasopressin. Am J Physiol 272;1997:F3–12.10.1152/ajprenal.1997.272.1.F3Suche in Google Scholar PubMed

12. Muglia LJ, Majzoub JA. Disorders of posterior pituitary. In: Sperling MA, editor. Pediatric endocrinology, 3rd ed. Philadelphia: Saunders Elsevier, 2008:335−6.Suche in Google Scholar

13. Juul KV, Schroeder M, Rittig S, Nørgaard JP. National Surveillance of Central Diabetes Insipidus (CDI) in Denmark: results from 5 years registration of 9309 prescriptions of desmopressin to 1285 CDI patients. J Clin Endocrinol Metab 2014;99:2181−7.10.1210/jc.2013-4411Suche in Google Scholar PubMed

14. Yadav J, Satapathy A, Jain V. Endocrine causes of disturbed sodium and water homeostasis. In: Jain V, Menon RK, editors. Case based reviews in pediatric endocrinology, 1st ed. New Delhi: Jaypee, 2014:157−68.Suche in Google Scholar

15. Birk J, Friberg MA, Prescianotto-Baschong C, Spiess M, Rutishauser J. Dominant pro-vasopressin mutants that cause diabetes insipidus form disulfide-linked fibrillar aggregates in the endoplasmic reticulum. J Cell Sci 2009;122:3994–4002.10.1242/jcs.051136Suche in Google Scholar PubMed

16. Pivonello R, De Bellis A, Faggiano A, Di Salle F, Petretta M, et al. Central diabetes insipidus and autoimmunity: relationship between the occurrence of antibodies to arginine vasopressin-secreting cells and clinical, immunological, and radiological features in a large cohort of patients with central diabetes insipidus of known and unknown etiology. J Clin Endocrinol Metab 2003;88:1629–36.10.1210/jc.2002-020791Suche in Google Scholar PubMed

17. Maghnie M, Ghirardello S, De Bellis A, di Iorgi N, Ambrosini L, et al. Idiopathic central diabetes insipidus in children and young adults is commonly associated with vasopressin-cell antibodies and markers of autoimmunity. Clin Endocrinol 2006;65:470–8.10.1111/j.1365-2265.2006.02616.xSuche in Google Scholar PubMed

18. Maghnie M, Altobelli M, Di Iorgi N, Genovese E, Meloni G, et al. Idiopathic central diabetes insipidus is associated with abnormal blood supply to the posterior pituitary gland caused by vascular impairment of the inferior hypophyseal artery system. J Clin Endocrinol Metab 2004;89:1891–6.10.1210/jc.2003-031608Suche in Google Scholar PubMed

19. Borenstein-Levin L, Koren I, Kugelman A, Bader D, Toropine A, et al. Post-hemorrhagic hydrocephalus and diabetes insipidus in preterm infants. J Pediatr Endocrinol Metab 2014;27:1261−3.10.1515/jpem-2014-0098Suche in Google Scholar PubMed

20. Janus DM, Wojcik M, Górska AZ, Wyrobek L, Urbanik A, et al. Adipsic diabetes insipidus in pediatric patients. Indian J Pediatr 2014;81:1307–14.10.1007/s12098-014-1421-8Suche in Google Scholar PubMed

21. Kamsteeg EJ, Wormhoudt TA, Rijss JP, van Os CH, Deen PM. An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J 1999;18:2394−400.10.1093/emboj/18.9.2394Suche in Google Scholar PubMed PubMed Central

22. Deen PM, Croes H, van Aubel RA, Ginsel LA, van Os CH.Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing. J Clin Invest 1995;95:2291−6.10.1172/JCI117920Suche in Google Scholar PubMed PubMed Central

23. Sands JM, Blount MA, Klein JD. Regulation of renal urea transport by vasopressin. Trans Am Clin Climatol Assoc 2011;122:82–92.Suche in Google Scholar

24. Crowley RK, Sherlock M, Agha A, Smith D, Thompson CJ. Clinical insights into adipsic diabetes insipidus: a large case series. Clin Endocrinol (Oxf) 2007;66:475−82.10.1111/j.1365-2265.2007.02754.xSuche in Google Scholar PubMed

25. Medlej R, Wasson J, Baz P, Azar S, Salti I, et al. Diabetes mellitus and optic atrophy: a study of Wolfram syndrome in the Lebanese population. J Clin Endocrinol Metab 2004;89:1656–61.10.1210/jc.2002-030015Suche in Google Scholar PubMed

26. Leger J, Velasquez A, Garel C, Hassan M, Czernichow P. Thickened pituitary stalk on magnetic resonance imaging in children with central diabetes insipidus. J Clin Endocrinol Metab 1999;84:1954–60.10.1210/jc.84.6.1954Suche in Google Scholar

27. Maghnie M, Cosi G, Genovese E, Manca-Bitti ML, Cohen A, et al. Central diabetes insipidus in children and young adults. N Engl J Med 2000;343:998–1007.10.1056/NEJM200010053431403Suche in Google Scholar PubMed

28. Di Iorgi N, Allegri AE, Napoli F, Calcagno A, Calandra E, et al. Central diabetes insipidus in children and young adults: etiological diagnosis and long-term outcome of idiopathic cases. J Clin Endocrinol Metab 2014;99:1264−72.10.1210/jc.2013-3724Suche in Google Scholar PubMed

29. Leger J, Velasquez A, Garel C, Hassan M, Czernichow P. Thickened pituitary stalk on magnetic resonance imaging in children with central diabetes insipidus. J Clin Endocrinol Metab 1999;84:1954−60.10.1210/jc.84.6.1954Suche in Google Scholar

30. Di Iorgi N, Napoli F, Allegri AE, Olivieri I, Bertelli E, et al. Diabetes insipidus–diagnosis and management. Horm Res Paediatr 2012;77:69−84.10.1159/000336333Suche in Google Scholar PubMed

31. Babey M, Kopp P, Robertson GL. Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol 2011;7:701−14.10.1038/nrendo.2011.100Suche in Google Scholar PubMed

32. Srivatsa A, Majzoub JA. Disorders of water homeostasis. In: Lifshitz F, editor. Pediatric endocrinology, 5th ed. New York: Informa Healthcare, 2007:651−92.Suche in Google Scholar

33. Vande Walle J, Stockner M, Raes A, Norgaard JP. Desmopressin 30 years in clinical use: a safety review. Curr Drug Saf 2007;2:232–8.10.2174/157488607781668891Suche in Google Scholar PubMed

34. Jakobsson B, Berg U. Effect of hydrochlorothiazide and indomethacin treatment on renal function in nephrogenic diabetes insipidus. Acta Paediatr 1994;83:522−5.10.1111/j.1651-2227.1994.tb13072.xSuche in Google Scholar PubMed

35. Seckl JR, Dunger DB. Diabetes insipidus. Current treatment recommendations. Drugs 1992;44:216–24.Suche in Google Scholar

36. Mishra G, Chandrashekhar SR. Management of diabetes insipidus in children. Indian J Endocrinol Metab 2011;15:S180−7.10.4103/2230-8210.84858Suche in Google Scholar PubMed PubMed Central

37. Los EL, Deen PM, Robben JH. Potential of nonpeptide (ant)agonists to rescue vasopressin V2 receptor mutants for the treatment of X-linked nephrogenic diabetes insipidus. J Neuroendocrinol 2010;22:393−9.10.1111/j.1365-2826.2010.01983.xSuche in Google Scholar PubMed

38. Sanches TR, Volpini RA, Massola Shimizu MH, Bragança AC, Oshiro-Monreal F, et al. Sildenafil reduces polyuria in rats with lithium-induced NDI. Am J Physiol Renal Physiol 2012;302:F216−25.10.1152/ajprenal.00439.2010Suche in Google Scholar PubMed

39. Féraille E, Dizin E, Roth I, Derouette JP, Szanto I, et al. NADPH oxidase 4 deficiency reduces aquaporin-2 mRNA expression in cultured renal collecting duct principal cells via increased PDE3 and PDE4 activity. PLoS One 2014;9:e87239.10.1371/journal.pone.0087239Suche in Google Scholar PubMed PubMed Central

40. Wade JB. Statins affect AQP2 traffic. Am J Physiol Renal Physiol 2011;301:F308.10.1152/ajprenal.00248.2011Suche in Google Scholar PubMed PubMed Central

Received: 2015-1-29
Accepted: 2015-7-27
Published Online: 2015-9-3
Published in Print: 2016-1-1

©2016 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. EDITORIAL
  3. Newborn screening of metabolic disorders
  4. Current and future perspective of newborn screening: an Indian scenario
  5. Hawkinsinuria in two unrelated Greek newborns: identification of a novel variant, biochemical findings and treatment
  6. Leptin and neuropeptide Y levels in newborns
  7. Markers of bone metabolism, serum leptin levels and bone mineral density in preterm babies
  8. Adipokines in umbilical cord blood from children born large for gestational age
  9. REVIEW
  10. Diabetes insipidus in children
  11. ORIGINAL ARTICLES
  12. Essential oils reduce autonomous response to pain sensation during self-monitoring of blood glucose among children with diabetes
  13. The prevalence of melanocortin-4 receptor gene mutations in Slovak obese children and adolescents
  14. Physical activity does not attenuate the relationship between daily cortisol and metabolic syndrome in obese youth
  15. Evaluation of the tshr gene reveals polymorphisms associated with typical symptoms in primary congenital hypothyroidism
  16. The effect of tamoxifen on pubertal bone development in adolescents with pubertal gynecomastia
  17. Effects of methylphenidate on appetite and growth in children diagnosed with attention deficit and hyperactivity disorder
  18. CASE REPORTS
  19. An unusual case of hereditary nephrogenic diabetes insipidus (HNDI) affecting mother and daughter
  20. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation syndrome and celiac disease in a 13-year-old girl: further evidence for autoimmunity?
  21. Prepubertal gynecomastia and chronic lavender exposure: report of three cases
  22. An adolescent girl referred with Cushing syndrome – does she or does she not have the syndrome?
Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jpem-2014-0518/html?lang=de
Button zum nach oben scrollen