Startseite Technik An investigation and analysis of plasmonic modulators: a review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An investigation and analysis of plasmonic modulators: a review

  • Diksha Chauhan ORCID logo , Zen Sbeah , Ram Prakash Dwivedi EMAIL logo , Jean-Michel Nunzi ORCID logo und Mohindra Singh Thakur
Veröffentlicht/Copyright: 2. Mai 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Plasmonics is an emerging and very advantageous technology which provides high speed and tiny size devices for fulfilling the demand of today’s high-speed world. SPPs are the information carrying elements in plasmonics, which are capable of breaking the diffraction limit. Plasmonics technology has shown its application in uncountable nanophotonic applications like switching, filtering, light modulation, sensing and in many more fields. Modulators are the key components of integrated photonic system. Various modulators which work on different effects are discussed in this study for providing a universal idea of modulators to researchers. Some useful plasmonic active materials are also discussed which are used in most of plasmonic modulators and other active devices. Previously, many researchers have worked on many kinds of modulators and switches, which operate on different kind of operating principles. For providing an overview about plasmonic modulators, their classification and their operation, we have discussed the state of art of some previously introduced modulators and switches which operates on electro-refractive effects and include electro-optic effect, Pockels effect, free charge carrier dispersion effect, phase change effect, elasto-optic effect, magneto-optic effect, and thermo-optic effect. Instead of different effects used in plasmonic switches and modulators different active materials like liquid crystals, graphene, vanadium di-oxide, chalcogenides, polymers, indium tin oxide, bismuth ferrite, barium titanate, and lithium niobate are also explained with their properties. Additionally, we also compared modulators based on different effects in terms of their design characteristics and performances.


Corresponding author: Ram Prakash Dwivedi, School of Core Engineering, Shoolini University, Solan, India, E-mail:

Funding source: Shoolini University

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by Shoolini University, Solan (India).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Gramotnev, DK, Bozhevolnyi, SI. Plasmonics beyond the diffraction limit. Nat Photonics 2010;4:83–91. https://doi.org/10.1038/nphoton.2009.282.Suche in Google Scholar

2. Chauhan, D, Adhikari, R, Saini, RK, Chang, SH, Dwivedi, RP. Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure. Optik 2020;223:165545. https://doi.org/10.1016/j.ijleo.2020.165545.Suche in Google Scholar

3. Si, G, Zhao, Y, Leong, ES, Liu, YJ. Liquid-crystal-enabled active plasmonics: a review. Materials 2014;7:1296–317. https://doi.org/10.3390/ma7021296.Suche in Google Scholar PubMed PubMed Central

4. Schuller, JA, Barnard, ES, Cai, W, Jun, YC, White, JS, Brongersma, ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010;9:193–204. https://doi.org/10.1038/nmat2630.Suche in Google Scholar PubMed

5. Cai, W, White, JS, Brongersma, ML. Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett 2009;9:4403–11. https://doi.org/10.1021/nl902701b.Suche in Google Scholar PubMed

6. MacDonald, KF, Sámson, ZL, Stockman, MI, Zheludev, NI. Ultrafast active plasmonics. Nat Photonics 2009;3:55–8. https://doi.org/10.1038/nphoton.2008.249.Suche in Google Scholar

7. Temnov, VV, Razdolski, I, Pezeril, T, Makarov, D, Seletskiy, D, Melnikov, A, et al.. Towards the nonlinear acousto-magneto-plasmonics. J Opt 2016;18: 093002. https://doi.org/10.1088/2040-8978/18/9/093002.Suche in Google Scholar

8. Briggs, RM, Grandidier, J, Burgos, SP, Feigenbaum, E, Atwater, HA. Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. Nano Lett 2010;10:4851–7. https://doi.org/10.1021/nl1024529.Suche in Google Scholar PubMed

9. Kumar, A, Gosciniak, J, Volkov, VS, Papaioannou, S, Kalavrouziotis, D, Vyrsokinos, K, et al.. Dielectric‐loaded plasmonic waveguide components: going practical. Laser Photon Rev 2013;7:938–51. https://doi.org/10.1002/lpor.201200113.Suche in Google Scholar

10. Emboras, A, Briggs, RM, Najar, A, Nambiar, S, Delacour, C, Grosse, P, et al.. Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides. Appl Phys Lett 2012;101:251117. https://doi.org/10.1063/1.4772941.Suche in Google Scholar

11. Holmgaard, T, Bozhevolnyi, SI. Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 2007;75:245405. https://doi.org/10.1103/physrevb.75.245405.Suche in Google Scholar

12. Melikyan, A, Kohl, M, Sommer, M, Koos, C, Freude, W, Leuthold, J. Photonic-to-plasmonic mode converter. Opt Lett 2014;39:3488–91. https://doi.org/10.1364/ol.39.003488.Suche in Google Scholar PubMed

13. Yang, F, Sambles, JR, Bradberry, GW. Long-range surface modes supported by thin films. Phys Rev B 1991;44:5855. https://doi.org/10.1103/physrevb.44.5855.Suche in Google Scholar PubMed

14. Krasavin, AV, Zayats, AV. Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett 2007;90:211101. https://doi.org/10.1063/1.2740485.Suche in Google Scholar

15. Zia, R, Selker, MD, Catrysse, PB, Brongersma, ML. Geometries and materials for subwavelength surface plasmon modes. JOSA A 2004;21:2442–6. https://doi.org/10.1364/josaa.21.002442.Suche in Google Scholar PubMed

16. Jiang, N, Zhuo, X, Wang, J. Active plasmonics: principles, structures, and applications. Chem Rev 2017;118:3054–99. https://doi.org/10.1021/acs.chemrev.7b00252.Suche in Google Scholar PubMed

17. Kuhlow, B. Modulators. Laser fundamentals part 2. Berlin, Heidelberg: Springer; 2006.Suche in Google Scholar

18. Brosi, JM, Koos, C, Andreani, LC, Waldow, M, Leuthold, J, Freude, W. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt Express 2008;16:4177–91. https://doi.org/10.1364/oe.16.004177.Suche in Google Scholar PubMed

19. Emboras, A, Hoessbacher, C, Haffner, C, Heni, W, Koch, U, Ma, P, et al.. Electrically controlled plasmonic switches and modulators. IEEE J Sel Top Quant Electron 2014;21:276–83.10.1109/JSTQE.2014.2382293Suche in Google Scholar

20. Yariv, A, Yeh, P. Optical waves in crystals. New York: Wiley; 1984.Suche in Google Scholar

21. Ghatak, AK, Thyagarajan, K, Tiyākarācan, K, Thyagarajan, TK. Optical electronics. Cambridge University Press; 1989.10.1017/CBO9781139167857Suche in Google Scholar

22. Dolfi, DW, Ranganath, TR. 50 GHz velocity-matched broad wavelength LiNbO/sub 3/modulator with multimode active section. Electron Lett 1992;28:1197–8. https://doi.org/10.1049/el:19920756.10.1049/el:19920756Suche in Google Scholar

23. Randhawa, S, Lachèze, S, Renger, J, Bouhelier, A, de Lamaestre, RE, Dereux, A, et al.. Performance of electro-optical plasmonic ring resonators at telecom wavelengths. Opt Express 2012;20:2354–62. https://doi.org/10.1364/oe.20.002354.Suche in Google Scholar PubMed

24. Jacobsen, RS, Andersen, KN, Borel, PI, Fage-Pedersen, J, Frandsen, LH, Hansen, O, et al.. Strained silicon as a new electro-optic material. Nature 2006;441:199–202. https://doi.org/10.1038/nature04706.Suche in Google Scholar PubMed

25. Soref, RI, Bennett, BR. Electrooptical effects in silicon. IEEE J Quant Electron 1987;23:123–9. https://doi.org/10.1109/jqe.1987.1073206.Suche in Google Scholar

26. Cardwell, DA, Ginley, DS, editors. Handbook of superconducting materials. Boca Raton: CRC Press; 2003.10.1887/0750308982Suche in Google Scholar

27. Luennemann, M, Hartwig, U, Panotopoulos, G, Buse, K. Electrooptic properties of lithium niobate crystals for extremely high external electric fields. Appl Phys B 2003;76:403–6. https://doi.org/10.1007/s00340-003-1123-9.Suche in Google Scholar

28. Zhang, X, Izutsu, M, Kumagai, H, Toyoda, K. Femtosecond optical Kerr studies of photodarkening effect on nonlinear optical properties of CdSxSe1− x doped glass. Opt Commun 1997;142:273–8. https://doi.org/10.1016/s0030-4018(97)00276-9.Suche in Google Scholar

29. Yariv, A. Optical electronics, 4th ed. USA: Saunders College Publishing CO; 1991.Suche in Google Scholar

30. Dwivedi, RP, Lee, EH. A compact plasmonic tunable filter using elasto-optic effects. Opt Laser Technol 2012;44:2130–4. https://doi.org/10.1016/j.optlastec.2012.03.014.Suche in Google Scholar

31. Dwivedi, RP, Lee, HS, Song, JH, An, S, Lee, EH. Plasmonic modulator utilizing three parallel metal–dielectric–metal waveguide directional coupler and elasto-optic effects. Opt Commun 2011;284:1418–23. https://doi.org/10.1016/j.optcom.2010.10.038.Suche in Google Scholar

32. Vaidya, T, Chauhan, D, Mola, GT, Dwivedi, RP. An ultra-compact plasmonic modulator using elasto-optic effect and resonance phenomena. J Opt Commun 2020;1:1–11. https://doi.org/10.1515/joc-2019-0243.Suche in Google Scholar

33. Chauhan, D, Mola, GT, Dwivedi, RP. An ultra-compact plasmonic Modulator/Switch using VO2 and elasto-optic effect. Optik 2020;201:163531. https://doi.org/10.1016/j.ijleo.2019.163531.Suche in Google Scholar

34. Vaidya, T, Chauhan, D, Lee, HI, Lee, C, Dwivedi, RP. An ultra-compact optical modulator using indium tin oxide material and metal-dielectric-metal waveguide structure. IJEAT 2019;8:463–6. https://doi.org/10.35940/ijeat.e7859.088619.Suche in Google Scholar

35. Reed, GT, Mashanovich, G, Gardes, FY, Thomson, DJ. Silicon optical modulators. Nat Photonics 2010;4:518–26. https://doi.org/10.1038/nphoton.2010.179.Suche in Google Scholar

36. Yang, L, Ding, J. High-speed silicon Mach–Zehnder optical modulator with large optical bandwidth. J Lightwave Technol 2014;32:966–70. https://doi.org/10.1109/jlt.2013.2295401.Suche in Google Scholar

37. Ayoub, AB, Swillam, MA. High performance silicon Mach-Zehnder interferometer based photonic modulator. In: 2017 International applied computational electromagnetics society symposium (ACES). Italy: IEEE; 2017:1–2 pp.10.23919/ROPACES.2017.7916022Suche in Google Scholar

38. Xu, Q, Schmidt, B, Pradhan, S, Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 2005;435:325–7. https://doi.org/10.1038/nature03569.Suche in Google Scholar PubMed

39. Soref, RI, Bennett, BR. Electrooptical effects in silicon. IEEE J Quant Electron 1987;23:123–9. https://doi.org/10.1109/jqe.1987.1073206.Suche in Google Scholar

40. Png, CE, Chan, SP, Lim, ST, Reed, GT. Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI). J Lightwave Technol 2004;22:1573. https://doi.org/10.1109/jlt.2004.827655.Suche in Google Scholar

41. Liu, A, Jones, R, Liao, L, Rubin, S-RDD, Cohen, O, Nicolaescu, R, et al.. A high speed silicon optical modulator based on a metal oxide semiconductor capacitor. Nature 2004;427:615–8. https://doi.org/10.1038/nature02310.Suche in Google Scholar PubMed

42. Yu, H, Pantouvaki, M, Van Campenhout, J, Korn, D, Komorowska, K, Dumon, P, et al.. Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators. Opt Express 2012;20:12926–38. https://doi.org/10.1364/oe.20.012926.Suche in Google Scholar PubMed

43. Dionne, JA, Diest, K, Sweatlock, LA, Atwater, HA. PlasMOStor: a metal− oxide− Si field effect plasmonic modulator. Nano Lett 2009;9:897–902. https://doi.org/10.1021/nl803868k.Suche in Google Scholar PubMed

44. Melikyan, A, Lindenmann, N, Walheim, S, Leufke, PM, Ulrich, S, Ye, J, et al.. Surface plasmon polariton absorption modulator. Opt Express 2011;19:8855–69. https://doi.org/10.1364/oe.19.008855.Suche in Google Scholar PubMed

45. Sorger, VJ, Lanzillotti-Kimura, ND, Ma, RM, Zhang, X. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 2012;1:17–22. https://doi.org/10.1515/nanoph-2012-0009.Suche in Google Scholar

46. Won, R. Integrating silicon photonics. Nat Photonics 2010;4:498–9. https://doi.org/10.1038/nphoton.2010.189.Suche in Google Scholar

47. Liao, L, Liu, A, Rubin, D, Basak, JA, Chetrit, YA, Nguyen, HA, et al.. 40 Gbit/s silicon optical modulator for high-speed applications. Electron Lett 2007;43:1196–7. https://doi.org/10.1049/el:20072253.10.1049/el:20072253Suche in Google Scholar

48. Kirchain, R, Kimerling, L. A roadmap for nanophotonics. Nat Photonics 2007;1:303–5. https://doi.org/10.1038/nphoton.2007.84.Suche in Google Scholar

49. Briggs, RM, Pryce, IM, Atwater, HA. Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Opt Express 2010;18:11192–201. https://doi.org/10.1364/oe.18.011192.Suche in Google Scholar

50. Dwivedi, RP, Sharma, D, Lee, C, Vaidya, T. A plasmonic switch using metal-insulator transition in VO2. J Optoelectron Adv Mater 2016;18:207–12.Suche in Google Scholar

51. Sun, M, Shieh, W, Unnithan, RR. Design of plasmonic modulators with vanadium dioxide on silicon-on-insulator. IEEE Photon J 2017;9:1–0. https://doi.org/10.1109/jphot.2017.2690448.Suche in Google Scholar

52. Wong, HM, Helmy, AS. Performance enhancement of nanoscale VO 2 modulators using hybrid plasmonics. J Lightwave Technol 2017;36:797–808.10.1109/JLT.2017.2782707Suche in Google Scholar

53. Kim, JT. CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition. Opt Lett 2014;39:3997–4000. https://doi.org/10.1364/ol.39.003997.Suche in Google Scholar PubMed

54. Kim, JT. Silicon optical modulators based on tunable plasmonic directional couplers. IEEE J Sel Top Quant Electron 2014;21:184–91.10.1109/JSTQE.2014.2346623Suche in Google Scholar

55. Paroli, P. Magneto-optical devices based on garnet films. Thin Solid Films 1984;114:187–219. https://doi.org/10.1016/0040-6090(84)90340-7.Suche in Google Scholar

56. Irvine, SE, Elezzabi, AY. Modeling of high-speed magnetooptic beam deflection. IEEE J Quant Electron 2002;38:1428–35. https://doi.org/10.1109/jqe.2002.802953.Suche in Google Scholar

57. Irvine, SE, Elezzabi, AY. Wideband magneto-optic modulation in a bismuth-substituted yttrium iron garnet waveguide. Opt Commun 2003;220:325–9. https://doi.org/10.1016/s0030-4018(03)01416-0.Suche in Google Scholar

58. Young, D, Tsai, CS. GHz bandwidth magneto‐optic interaction in yttrium iron garnet‐gadolinium gallium garnet waveguide using magnetostatic forward volume waves. Appl Phys Lett 1988;53:1696–8. https://doi.org/10.1063/1.99800.Suche in Google Scholar

59. Dotsch, H, Hertel, P, Luhrmann, B, Sure, S, Winkler, HP, Ye, M. Applications of magnetic garnet films in integrated optics. IEEE Trans Magn 1992;28:2979–84. https://doi.org/10.1109/20.179691.Suche in Google Scholar

60. Prabhakar, A, Stancil, DD. Wideband optical modulation via the magneto–optic interaction in a bismuth-lutetium-iron garnet film. Appl Phys Lett 1997;71:151–3. https://doi.org/10.1063/1.119487.Suche in Google Scholar

61. Chau, KJ, Irvine, SE, Elezzabi, AY. A gigahertz surface magneto-plasmon optical modulator. IEEE J Quant Electron 2004;40:571–9. https://doi.org/10.1109/jqe.2004.826422.Suche in Google Scholar

62. Kerr, JXLIII. On rotation of the plane of polarization by reflection from the pole of a magnet. London Edinburgh Dublin Phil Mag J Sci 1877;3:321–43.https://doi.org/10.1080/14786447708639245.Suche in Google Scholar

63. Ando, K. Springer-verlag series in solid-state science. In: Sugano, S, Kojima, N, editors. Magneto-optics, vol 128. Berlin: Springer; 2000. 211–44 pp.10.1007/978-3-662-04143-7_7Suche in Google Scholar

64. Irvine, SE, Elezzabi, AY. A miniature broadband bismuth-substituted yttrium iron garnet magneto-optic modulator. J Phys Appl Phys 2003;36:2218. https://doi.org/10.1088/0022-3727/36/18/007.Suche in Google Scholar

65. Park, JH, Takagi, H, Cho, JK, Nishimura, K, Uchida, H, Inoue, M. Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy. IEEE Trans Magn 2004;40:3045–7. https://doi.org/10.1109/tmag.2004.833235.Suche in Google Scholar

66. Chau, KJ, Irvine, SE, Elezzabi, AY. A gigahertz surface magneto-plasmon optical modulator. IEEE J Quant Electron 2004;40:571–9. https://doi.org/10.1109/jqe.2004.826422.Suche in Google Scholar

67. Khatir, M, Granpayeh, N. Magneto-optic surface plasmon polariton modulator based on refractive index variations. Appl Opt 2014;53:2539–47. https://doi.org/10.1364/ao.53.002539.Suche in Google Scholar PubMed

68. Haddadpour, A, Nezhad, VF, Yu, Z, Veronis, G. Highly compact magneto-optical switches for metal-dielectric-metal plasmonic waveguides. Opt Lett 2016;41:4340–3. https://doi.org/10.1364/ol.41.004340.Suche in Google Scholar

69. Gosciniak, J, Bozhevolnyi, SI, Andersen, TB, Volkov, VS, Kjelstrup-Hansen, J, Markey, L, et al.. Thermo-optic control of dielectric-loaded plasmonic waveguide components. Opt Express 2010;18:1207–16. https://doi.org/10.1364/oe.18.001207.Suche in Google Scholar

70. Bozhevolnyi, SI. Dynamic components utilizing long-range surface plasmon polaritons. In: Nanophotonics with surface plasmons. Amsterdam: Elsevier; 2007:1–34 pp.10.1016/B978-044452838-4/50002-3Suche in Google Scholar

71. Sincerbox, GT, Gordon, JC. Small fast large-aperture light modulator using attenuated total reflection. Appl Opt 1981;20:1491–6. https://doi.org/10.1364/ao.20.001491.Suche in Google Scholar PubMed

72. Solgaard, O, Ho, F, Thackara, JI, Bloom, DM. High frequency attenuated total internal reflection light modulator. Appl Phys Lett 1992;61:2500–2. https://doi.org/10.1063/1.108161.Suche in Google Scholar

73. Holmgaard, T, Chen, Z, Bozhevolnyi, SI, Markey, L, Dereux, A, Krasavin, AV, et al.. Wavelength selection by dielectric-loaded plasmonic components. Appl Phys Lett 2009;94: 051111. https://doi.org/10.1063/1.3078235.Suche in Google Scholar

74. Gosciniak, J, Bozhevolnyi, SI. Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides. Sci Rep 2013;3:1803. https://doi.org/10.1038/srep01803.Suche in Google Scholar

75. Raether, H. Surface plasmons on smooth surfaces. In: Surface plasmons on smooth and rough surfaces and on gratings. Berlin, Heidelberg: Springer; 1988. 4–39 pp.10.1007/BFb0048319Suche in Google Scholar

76. Sarid, D. Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 1981;47:1927. https://doi.org/10.1103/physrevlett.47.1927.Suche in Google Scholar

77. Burke, JJ, Stegeman, GI, Tamir, T. Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 1986;33:5186. https://doi.org/10.1103/physrevb.33.5186.Suche in Google Scholar PubMed

78. Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 2000;61:10484. https://doi.org/10.1103/physrevb.61.10484.Suche in Google Scholar

79. Charbonneau, R, Berini, P, Berolo, E, Lisicka-Shrzek, E. Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width. Opt Lett 2000;25:844–6. https://doi.org/10.1364/ol.25.000844.Suche in Google Scholar PubMed

80. Nikolajsen, T, Leosson, K, Bozhevolnyi, SI. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 2004;85:5833–5. https://doi.org/10.1063/1.1835997.Suche in Google Scholar

81. Gosciniak, J, Markey, L, Dereux, A, Bozhevolnyi, SI. Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides. Opt Express 2012;20:16300–9. https://doi.org/10.1364/oe.20.016300.Suche in Google Scholar

82. Dickson, W, Wurtz, GA, Evans, PR, Pollard, RJ, Zayats, AV. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett 2008;8:281–6. https://doi.org/10.1021/nl072613g.Suche in Google Scholar PubMed

83. Liu, YJ, Hao, Q, Smalley, JS, Liou, J, Khoo, IC, Huang, TJ. A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. Appl Phys Lett 2010;97: 091101. https://doi.org/10.1063/1.3483156.Suche in Google Scholar

84. Liu, YJ, Zheng, YB, Shi, J, Huang, H, Walker, TR, Huang, TJ. Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals. Opt Lett 2009;34:2351–3. https://doi.org/10.1364/ol.34.002351.Suche in Google Scholar PubMed

85. Hsiao, VK, Zheng, YB, Juluri, BK, Huang, TJ. Light‐driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals. Adv Mater 2008;20:3528–32. https://doi.org/10.1002/adma.200800045.Suche in Google Scholar

86. Chu, KC, Chao, CY, Chen, YF, Wu, YC, Chen, CC. Electrically controlled surface plasmon resonance frequency of gold nanorods. Appl Phys Lett 2006;89:103107. https://doi.org/10.1063/1.2335812.Suche in Google Scholar

87. Zografopoulos, DC, Beccherelli, R. Long-range plasmonic directional coupler switches controlled by nematic liquid crystals. Opt Express 2013;21:8240–50. https://doi.org/10.1364/oe.21.008240.Suche in Google Scholar

88. Zografopoulos, DC, Beccherelli, R. Liquid-crystal-tunable metal–insulator–metal plasmonic waveguides and Bragg resonators. J Opt 2013;15: 055009. https://doi.org/10.1088/2040-8978/15/5/055009.Suche in Google Scholar

89. Zografopoulos, DC, Beccherelli, R, Tasolamprou, AC, Kriezis, EE. Liquid–crystal tunable waveguides for integrated plasmonic components. Photonics Nanostruct Fund Appl 2013;11:73–84. https://doi.org/10.1016/j.photonics.2012.08.004.Suche in Google Scholar

90. Si, G, Zhao, Y, Lv, J, Lu, M, Wang, F, Liu, H, et al.. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 2013;5:6243–8. https://doi.org/10.1039/c3nr01419c.Suche in Google Scholar PubMed

91. Si, G, Zhao, Y, Liu, H, Teo, S, Zhang, M, Jun Huang, T, et al.. Annular aperture array-based color filter. Appl Phys Lett 2011;99: 033105. https://doi.org/10.1063/1.3608147.Suche in Google Scholar

92. Liu, YJ, Si, GY, Leong, ES, Xiang, N, Danner, AJ, Teng, JH. Light‐driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater 2012;24:O131–5. https://doi.org/10.1002/adma.201104440.Suche in Google Scholar PubMed

93. Si, G, Teo, EJ, Bettiol, AA, Teng, J, Danner, AJ. Suspended slab and photonic crystal waveguides in lithium niobate. J Vac Sci Technol, B Nanotechnol Microelectron 2010;28:316–20. https://doi.org/10.1116/1.3327925.Suche in Google Scholar

94. Dickson, W, Evans, PR, Wurtz, GA, Hendren, W, Atkinson, R, Pollard, RJ, et al.. Towards nonlinear plasmonic devices based on metallic nanorods. J Microsc 2008;229:415–20. https://doi.org/10.1111/j.1365-2818.2008.01921.x.Suche in Google Scholar PubMed

95. Liu, YJ, Si, GY, Leong, ES, Wang, B, Danner, AJ, Yuan, XC, et al.. Optically tunable plasmonic color filters. Appl Phys A 2012;107:49–54. https://doi.org/10.1007/s00339-011-6736-y.Suche in Google Scholar

96. He, J, Huang, X, Li, YC, Liu, Y, Babu, T, Aronova, MA, et al.. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. J Am Chem Soc 2013;135:7974–84. https://doi.org/10.1021/ja402015s.Suche in Google Scholar PubMed

97. Gandra, N, Abbas, A, Tian, L, Singamaneni, S. Plasmonic planet–satellite analogues: hierarchical self-assembly of gold nanostructures. Nano Lett 2012;12:2645–51. https://doi.org/10.1021/nl3012038.Suche in Google Scholar PubMed

98. Simoni, F. Nonlinear optical properties of LC and PDLC. Italy: World Scientific; 1997.Suche in Google Scholar

99. Alavi, SM, Armand, H. Liquid crystal-based dielectric-loaded plasmonic ring resonator filter. ACES; 2015;30:245–54.Suche in Google Scholar

100. Wu, ST, Efron, U. Optical properties of thin nematic liquid crystal cells. Appl Phys Lett 1986;48:624–6. https://doi.org/10.1063/1.96724.Suche in Google Scholar

101. Hao, Q, Zhao, Y, Juluri, BK, Kiraly, B, Liou, J, Khoo, IC, et al.. Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals. J Appl Phys 2011;109: 084340. https://doi.org/10.1063/1.3581037.Suche in Google Scholar

102. Li, XV, Cole, RM, Milhano, CA, Bartlett, PN, Soares, BF, Baumberg, JJ, et al.. The fabrication of plasmonic Au nanovoid trench arrays by guided self-assembly. Nanotechnology 2009;20:285309. https://doi.org/10.1088/0957-4484/20/28/285309.Suche in Google Scholar PubMed

103. Khoo, IC. Nonlinear optics of liquid crystalline materials. Phys Rep 2009;471:221–67. https://doi.org/10.1016/j.physrep.2009.01.001.Suche in Google Scholar

104. Bonaccorso, F, Sun, Z, Hasan, TA, Ferrari, AC. Graphene photonics and optoelectronics. Nat Photonics 2010;4:611. https://doi.org/10.1038/nphoton.2010.186.Suche in Google Scholar

105. Grigorenko, AN, Polini, M, Novoselov, KS. Graphene plasmonics. Nat Photonics 2012;6:749–58. https://doi.org/10.1038/nphoton.2012.262.Suche in Google Scholar

106. Hanson, GW. Erratum: “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene” [J. Appl. Phys. 103, 064302 (2008)]. J Appl Phys 2013;113: 029902.https://doi.org/10.1063/1.4776680.Suche in Google Scholar

107. Gan, CH, Chu, HS, Li, EP. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys Rev B 2012;85:125431. https://doi.org/10.1103/physrevb.85.125431.Suche in Google Scholar

108. Christensen, J, Manjavacas, A, Thongrattanasiri, S, Koppens, FH, García de Abajo, FJ. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 2012;6:431–40. https://doi.org/10.1021/nn2037626.Suche in Google Scholar PubMed

109. Kim, JT, Chung, KH, Choi, CG. Thermo-optic mode extinction modulator based on graphene plasmonic waveguide. Opt Express 2013;21:15280–6. https://doi.org/10.1364/oe.21.015280.Suche in Google Scholar PubMed

110. Kim, JT, Choi, SY. Graphene-based plasmonic waveguides for photonic integrated circuits. Opt Express 2011;19:24557–62. https://doi.org/10.1364/oe.19.024557.Suche in Google Scholar PubMed

111. Patel, SK, Sorathiya, V, Sbeah, Z, Lavadiya, S, Nguyen, TK, Dhasarathan, V. Graphene-based tunable infrared multi band absorber. Opt Commun 2020;474:126109. https://doi.org/10.1016/j.optcom.2020.126109.Suche in Google Scholar

112. Liu, M, Yin, X, Ulin-Avila, E, Geng, B, Zentgraf, T, Ju, L, et al.. A graphene-based broadband optical modulator. Nature 2011;474:64–7. https://doi.org/10.1038/nature10067.Suche in Google Scholar PubMed

113. Kim, K, Choi, JY, Kim, T, Cho, SH, Chung, HJ. A role for graphene in silicon-based semiconductor devices. Nature 2011;479:338–44. https://doi.org/10.1038/nature10680.Suche in Google Scholar PubMed

114. Liu, M, Yin, X, Zhang, X. Double-layer graphene optical modulator. Nano Lett 2012;12:1482–5. https://doi.org/10.1021/nl204202k.Suche in Google Scholar PubMed

115. Li, W, Chen, B, Meng, C, Fang, W, Xiao, Y, Li, X, et al.. Ultrafast all-optical graphene modulator. Nano Lett 2014;14:955–9. https://doi.org/10.1021/nl404356t.Suche in Google Scholar PubMed

116. Youngblood, N, Anugrah, Y, Ma, R, Koester, SJ, Li, M. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett 2014;14:2741–6. https://doi.org/10.1021/nl500712u.Suche in Google Scholar PubMed

117. Mueller, T, Xia, F, Avouris, P. Graphene photodetectors for high-speed optical communications. Nat Photonics 2010;4:297–301. https://doi.org/10.1038/nphoton.2010.40.Suche in Google Scholar

118. Liu, M, Yin, X, Ulin-Avila, E, Geng, B, Zentgraf, T, Ju, L, et al.. A graphene-based broadband optical modulator. Nature 2011;474:64–7. https://doi.org/10.1038/nature10067.Suche in Google Scholar PubMed

119. Bao, Q, Zhang, H, Wang, B, Ni, Z, Lim, CH, Wang, Y, et al.. Broadband graphene polarizer. Nat Photonics 2011;5:411–5. https://doi.org/10.1038/nphoton.2011.102.Suche in Google Scholar

120. Gan, S, Cheng, C, Zhan, Y, Huang, B, Gan, X, Li, S, et al.. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale 2015;7:20249–55. https://doi.org/10.1039/c5nr05084g.Suche in Google Scholar PubMed

121. Liu, Z, Liu, B, Xu, G, Ho, ST, Tang, P, Meier, AL, et al.. Barium titanate thin film electro-optic modulator with low half-wave voltage at 1310nm. In: Conference on lasers and electro-optics. Optical Society of America; 2005. CThS4 p.Suche in Google Scholar

122. Dicken, MJ, Sweatlock, LA, Pacifici, D, Lezec, HJ, Bhattacharya, K, Atwater, HA. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett 2008;8:4048–52. https://doi.org/10.1021/nl802981q.Suche in Google Scholar PubMed

123. Werbowy, A, Firek, P, Kwietniewski, N, Olszyna, A. Reactive impulse plasma ablation deposited barium titanate thin films on silicon. In: Electron technology conference 2013, vol 8902. International Society for Optics and Photonics; 2013. 89022O p.10.1117/12.2031267Suche in Google Scholar

124. Galler, N, Ditlbacher, H, Steinberger, B, Hohenau, A, Dansachmüller, M, Camacho-Gonzales, F, et al.. Electrically actuated elastomers for electro–optical modulators. Appl Phys B 2006;85:7–10. https://doi.org/10.1007/s00340-006-2434-4.Suche in Google Scholar

125. Choi, SG, Yi, HT, Cheong, SW, Hilfiker, JN, France, R, Norman, AG. Optical anisotropy and charge-transfer transition energies in BiFeO3 from 1.0 to 5.5 eV. Phys Rev B 2011;83:100101. https://doi.org/10.1103/physrevb.83.100101.Suche in Google Scholar

126. Chu, SH, Singh, DJ, Wang, J, Li, EP, Ong, KP. High optical performance and practicality of active plasmonic devices based on rhombohedral BiFeO3. Laser Photon Rev 2012;6:684–9. https://doi.org/10.1002/lpor.201280022.Suche in Google Scholar

127. Babicheva, VE, Zhukovsky, SV, Lavrinenko, AV. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator. Opt Express 2014;22:28890–7. https://doi.org/10.1364/oe.22.028890.Suche in Google Scholar

128. Boyd, RW. Nonlinear optics. San Diego, Calif: Academic; 2008. p. 19922–39.Suche in Google Scholar

129. Wooten, EL, Kissa, KM, Yi-Yan, A, Murphy, EJ, Lafaw, DA, Hallemeier, PF, et al.. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quant Electron 2000;6:69–82. https://doi.org/10.1109/2944.826874.Suche in Google Scholar

130. Schmidt, RV, Kaminow, IP. Metal‐diffused optical waveguides in LiNbO3. Appl Phys Lett 1974;25:458–60. https://doi.org/10.1063/1.1655547.Suche in Google Scholar

131. Meng, Z, Zhou, H, Liao, Y, Yao, Q. Research on measurement of frequency shift characteristics based on LiNbO3 waveguide electro-optic intensity modulator. In: 2008 1st Asia-Pacific optical fiber sensors conference. IEEE; 2008. 1–5 pp.10.1109/APOS.2008.5226311Suche in Google Scholar

132. Kondo, J, Aoki, K, Kondo, A, Ejiri, T, Iwata, Y, Hamajima, A, et al.. High-speed and low-driving-Voltage thin-sheet X-cut LiNbO/sub 3/Modulator with laminated low-dielectric-constant adhesive. IEEE Photon Technol Lett 2005;17:2077–9. https://doi.org/10.1109/lpt.2005.856324.Suche in Google Scholar

133. Thomaschewski, M, Zenin, VA, Wolff, C, Bozhevolnyi, SI. Plasmonic monolithic lithium niobate directional coupler switches. Nat Commun 2020;11:1–6. https://doi.org/10.1038/s41467-020-14539-y.Suche in Google Scholar PubMed PubMed Central

134. West, PR, Ishii, S, Naik, GV, Emani, NK, Shalaev, VM. Boltasseva, a. Searching for better plasmonic materials. Laser Photon Rev 2010;4:795–808. https://doi.org/10.1002/lpor.200900055.Suche in Google Scholar

135. Feigenbaum, E, Diest, K, Atwater, HA. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett 2010;10:2111–6. https://doi.org/10.1021/nl1006307.Suche in Google Scholar PubMed

136. Xiao, X, Xu, H, Li, X, Li, Z, Chu, T, Yu, Y, et al.. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt Express 2013;21:4116–25. https://doi.org/10.1364/oe.21.004116.Suche in Google Scholar

137. Lipson, M. Compact electro-optic modulators on a silicon chip. IEEE J Sel Top Quant Electron 2006;12:1520–6. https://doi.org/10.1109/jstqe.2006.885341.Suche in Google Scholar

138. Babicheva, VE, Lavrinenko, AV. Plasmonic modulator optimized by patterning of active layer and tuning permittivity. Opt Commun 2012;285:5500–7. https://doi.org/10.1016/j.optcom.2012.07.117.Suche in Google Scholar

139. Ye, C, Khan, S, Li, ZR, Simsek, E, Sorger, VJ. λ-size ITO and graphene-based electro-optic modulators on SOI. IEEE J Sel Top Quant Electron 2014;20:40–9. https://doi.org/10.1109/jstqe.2014.2298451.Suche in Google Scholar

140. Wegkamp, D, Stähler, J. Ultrafast dynamics during the photoinduced phase transition in VO2. Prog Surf Sci 2015;90:464–502. https://doi.org/10.1016/j.progsurf.2015.10.001.Suche in Google Scholar

141. Dicken, MJ, Aydin, K, Pryce, IM, Sweatlock, LA, Boyd, EM, Walavalkar, S, et al.. Frequency tunable near-infrared metamaterials based on VO 2 phase transition. Opt Express 2009;17:18330–9. https://doi.org/10.1364/oe.17.018330.Suche in Google Scholar PubMed

142. Verleur, HW, Barker, ASJr, Berglund, CN. Optical properties of V O 2 between 0.25 and 5 eV. Phys Rev 1968;172:788. https://doi.org/10.1103/physrev.172.788.Suche in Google Scholar

143. Wu, B, Zimmers, A, Aubin, H, Ghosh, R, Liu, Y, Lopez, R. Electric-field-driven phase transition in vanadium dioxide. Phys Rev B 2011;84:241410. https://doi.org/10.1103/physrevb.84.241410.Suche in Google Scholar

144. Lysenko, S, Rua, A, Fernandez, F, Liu, H. Optical nonlinearity and structural dynamics of VO 2 films. J Appl Phys 2009;105: 043502. https://doi.org/10.1063/1.3078141.Suche in Google Scholar

145. Chauhan, D, Kumar, A, Adhikari, R, Saini, RK, Chang, SH, Dwivedi, RP. High performance Vanadium di-oxide based active nano plasmonic filter and switch. Optik 2021;225:165672. https://doi.org/10.1016/j.ijleo.2020.165672.Suche in Google Scholar

146. Park, JB, Lee, IM, Lee, SY, Kim, K, Choi, D, Song, EY, et al.. Tunable subwavelength hot spot of dipole nanostructure based on VO 2 phase transition. Opt Express 2013;21:15205–12. https://doi.org/10.1364/oe.21.015205.Suche in Google Scholar PubMed

147. Cueff, S, Li, D, Zhou, Y, Wong, FJ, Kurvits, JA, Ramanathan, S, et al.. Dynamic control of light emission faster than the lifetime limit using VO 2 phase-change. Nat Commun 2015;6:1–6. https://doi.org/10.1038/ncomms9636.Suche in Google Scholar PubMed PubMed Central

148. Kadlec, F, Kadlec, C, Kužel, P. Contrast in terahertz conductivity of phase-change materials. Solid State Commun 2012;152:852–5. https://doi.org/10.1016/j.ssc.2012.02.018.Suche in Google Scholar

149. Shu, MJ, Zalden, P, Chen, F, Weems, B, Chatzakis, I, Xiong, F, et al.. Ultrafast terahertz-induced response of GeSbTe phase-change materials. Appl Phys Lett 2014;104:251907. https://doi.org/10.1063/1.4884816.Suche in Google Scholar

150. Ríos, C, Stegmaier, M, Hosseini, P, Wang, D, Scherer, T, Wright, CD, et al.. Integrated all-photonic non-volatile multi-level memory. Nat Photonics 2015;9:725–32.10.1038/nphoton.2015.182Suche in Google Scholar

151. Zheng, J, Khanolkar, A, Xu, P, Colburn, S, Deshmukh, S, Myers, J, et al.. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt Mater Express 2018;8:1551–61. https://doi.org/10.1364/ome.8.001551.Suche in Google Scholar

152. Gholipour, B, Zhang, J, MacDonald, KF, Hewak, DW, Zheludev, NI. An all‐optical, non‐volatile, bidirectional, phase‐change meta‐switch. Adv Mater 2013;25:3050–4. https://doi.org/10.1002/adma.201300588.Suche in Google Scholar PubMed

153. Siegrist, T, Jost, P, Volker, H, Woda, M, Merkelbach, P, Schlockermann, C, et al.. Disorder-induced localization in crystalline phase-change materials. Nat Mater 2011;10:202–8. https://doi.org/10.1038/nmat2934.Suche in Google Scholar PubMed

154. Loke, D, Lee, TH, Wang, WJ, Shi, LP, Zhao, R, Yeo, YC, et al.. Breaking the speed limits of phase-change memory. Science 2012;336:1566–9. https://doi.org/10.1126/science.1221561.Suche in Google Scholar PubMed

155. Hosseini, P, Wright, CD, Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 2014;511:206–11. https://doi.org/10.1038/nature13487.Suche in Google Scholar PubMed

156. Chen, F, Sun, L, Zhang, H, Li, J, Yu, C. Tunable optical absorption based on plasmonic nanostructure assisted by phase-changing material. Optik 2019;189:72–80. https://doi.org/10.1016/j.ijleo.2019.05.082.Suche in Google Scholar

157. Stegmaier, M, Ríos, C, Bhaskaran, H, Wright, CD, Pernice, WH. Nonvolatile all‐optical 1× 2 switch for chipscale photonic networks. Adv Opt Mater 2017;5:1600346. https://doi.org/10.1002/adom.201600346.Suche in Google Scholar

158. Raoux, S, Xiong, F, Wuttig, M, Pop, E. Phase change materials and phase change memory. MRS Bull 2014;39:703–10. https://doi.org/10.1557/mrs.2014.139.Suche in Google Scholar

159. Singh, M, Raghuwanshi, SK, Srinivas, T. Nanophotonic on-chip hybrid plasmonic electro-optic modulator with phase change materials. Phys Lett 2019;383:3196–9. https://doi.org/10.1016/j.physleta.2019.07.004.Suche in Google Scholar

160. Zhang, Z, Yang, J, Bai, W, Han, Y, He, X, Zhang, J, et al.. Chipscale plasmonic modulators and switches based on metal–insulator–metal waveguides with Ge 2 Sb 2 Te 5. J Nanophotonics 2019;13: 046009. https://doi.org/10.1117/1.jnp.13.046009.Suche in Google Scholar

161. Yoshida, K, Kanda, Y, Kohjiro, S. A traveling-wave-type LiNbO/sub 3/optical modulator with superconducting electrodes. IEEE Trans Microw Theor Tech 1999;47:1201–5. https://doi.org/10.1109/22.775458.Suche in Google Scholar

162. DeRose, CT, Enami, Y, Loychik, C, Norwood, RA, Mathine, D, Fallahi, M, et al.. Pockel’s coefficient enhancement of poled electro-optic polymers with a hybrid organic-inorganic sol-gel cladding layer. Appl Phys Lett 2006;89:131102. https://doi.org/10.1063/1.2357157.Suche in Google Scholar

163. Enami, Y, Hong, J, Zhang, C, Luo, J, Jen, AK. Polymeric hybrid waveguide modulators with high optical stability and high electro-optic coefficient. In: Conference on lasers and electro-optics/Pacific Rim 2011 Aug 28. Optical Society of America; 2011. C395 p.10.1109/IQEC-CLEO.2011.6193786Suche in Google Scholar

164. Al-Tarawni, MA, Bakar, AA, Zain, AR. Design segmented slot waveguide for integrated waveguide modulator. In: 2016 IEEE international conference on semiconductor electronics (ICSE). IEEE; 2016. 43–6 pp.10.1109/SMELEC.2016.7573586Suche in Google Scholar

165. Cross, GH. Polymer devices and high bandwidth optoelectronics. In: IEE colloquium on plastics materials for optical transmission 1989 Nov 27. IET; 1989. 3–1 pp.Suche in Google Scholar

166. Eldada, L. Advances in polymer-based dynamic photonic components, modules, and subsystems. In: Passive components and fiber-based devices III 2006 Oct 3, vol 6351; 2006. International Society for Optics and Photonics. p. 63510Y.10.1117/12.689229Suche in Google Scholar

167. Taheri, AN, Kaatuzian, H. Design and simulation of a nanoscale electro-plasmonic 1× 2 switch based on asymmetric metal–insulator–metal stub filters. Appl Opt 2014;53:6546–53. https://doi.org/10.1364/ao.53.006546.Suche in Google Scholar

168. Jazbinsek, M, Mutter, L, Gunter, P. Photonic applications with the organic nonlinear optical crystal DAST. IEEE J Sel Top Quant Electron 2008;14:1298–311. https://doi.org/10.1109/jstqe.2008.921407.Suche in Google Scholar

169. Abdelatty, MY, Zaki, AO, Swillam, MA. Hybrid silicon plasmonic organic directional coupler-based modulator. Appl Phys A 2017;123:11. https://doi.org/10.1007/s00339-016-0656-9.Suche in Google Scholar

170. Li, J, Baird, G, Lin, YH, Ren, H, Wu, ST. Refractive‐index matching between liquid crystals and photopolymers. J Soc Inf Disp 2005;13:1017–26. https://doi.org/10.1889/1.2150371.Suche in Google Scholar

171. Wang, X, Chen, YP, Nolte, DD. Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology. Opt Express 2008;16:22105–12. https://doi.org/10.1364/oe.16.022105.Suche in Google Scholar PubMed

172. Babicheva, VE, Lavrinenko, AV. A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core. Photon Lett Poland 2013;5:57–9. https://doi.org/10.4302/plp.2013.2.08.Suche in Google Scholar

173. Babicheva, VE, Zhukovsky, SV, Lavrinenko, AV. Nanophotonic modulator with bismuth ferrite as low-loss switchable material. In: CLEO: science and innovations 2015 May 10. Optical Society of America; 2015. JTu5A–72 pp.10.1364/CLEO_AT.2015.JTu5A.72Suche in Google Scholar

174. Alam, MZ, De Leon, I, Boyd, RW. Unity-order intensity-dependent change in refractive index in indium-tin oxide at its epsilon-near-zero wavelength. In: Nonlinear optics. Optical Society of America; 2015. NTu3A–2 pp.10.1364/NLO.2015.NTu3A.2Suche in Google Scholar

175. Zhu, S, Lo, GQ, Kwong, DL. Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators. Opt Express 2010;18:27802–19. https://doi.org/10.1364/oe.18.027802.Suche in Google Scholar PubMed

176. Melikyan, A, Alloatti, L, Muslija, A, Hillerkuss, D, Schindler, PC, Li, J, et al.. High-speed plasmonic phase modulators. Nat Photonics 2014;8:229–33. https://doi.org/10.1038/nphoton.2014.9.Suche in Google Scholar

177. Ansell, D, Radko, IP, Han, Z, Rodriguez, FJ, Bozhevolnyi, SI, Grigorenko, AN. Hybrid graphene plasmonic waveguide modulators. Nat Commun 2015;6:1–6. https://doi.org/10.1038/ncomms9846.Suche in Google Scholar PubMed PubMed Central

178. Gosciniak, J, Tan, DT. Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology 2013;24:185202. https://doi.org/10.1088/0957-4484/24/18/185202.Suche in Google Scholar PubMed

179. Chauhan, D, Jara, AD, Lee, C, Dwivedi, RP. An ultra-compact electrically controlled micro ring resonator for the application as tunable filter. Adv Sci Eng Med 2019;11:475–83. https://doi.org/10.1166/asem.2019.2393.Suche in Google Scholar

180. Sun, M, Earl, S, Shieh, W, Unnithan, RR. Design of a plasmonic modulator based on vanadium dioxide. University of Sydney, Australia: NUSOD; 2016.10.1109/IPCon.2017.8116015Suche in Google Scholar

181. Lin, C, Helmy, AS. Dynamically reconfigurable nanoscale modulators utilizing coupled hybrid plasmonics. Sci Rep 2015;5:1–0. https://doi.org/10.1038/srep12313.Suche in Google Scholar PubMed PubMed Central

182. Kamada, S, Okamoto, T, El-Zohary, SE, Haraguchi, M. Design optimization and fabrication of Mach-Zehnder interferometer based on MIM plasmonic waveguides. Opt Express 2016;24:16224–31. https://doi.org/10.1364/oe.24.016224.Suche in Google Scholar PubMed

183. Dennis, BS, Haftel, MI, Czaplewski, DA, Lopez, D, Blumberg, G, Aksyuk, V. Ultracompact nano-mechanical plasmonic phase modulators. arXiv preprint arXiv:1410.0273. 2014 Oct 1.Suche in Google Scholar

184. Min, C, Veronis, G. Theoretical investigation of fabrication related disorders on the properties of subwavelength metal dielectric-metal plasmonic waveguides. Opt Express 2010;18:20939–48. https://doi.org/10.1364/oe.18.020939.Suche in Google Scholar PubMed

185. Miyazaki, HT, Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. PRL 2006;96: 097401. https://doi.org/10.1103/PhysRevLett.96.097401.Suche in Google Scholar PubMed

186. Barwicz, T, Haus, HA. Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides. J Lightwave Technol 2005;23:2719. https://doi.org/10.1109/jlt.2005.850816.Suche in Google Scholar

187. Poulton, CG, Koos, C, Fujii, M, Pfrang, A, Schimmel, T, Leuthold, J, et al.. Radiation modes and roughness loss in high index-contrast waveguides. IEEE J Sel Top Quant Electron 2006;12:1306–21. https://doi.org/10.1109/jstqe.2006.881648.Suche in Google Scholar

188. Miller, KJ, Hallman, KA, Haglund, RF, Weiss, SM. Silicon waveguide modulator with embedded phase change material. arXiv preprint arXiv:1708.04297; 2017.10.1364/CLEO_SI.2017.STu3N.8Suche in Google Scholar

189. Melikyan, A, Köhnle, K, Lauermann, M, Palmer, R, Koeber, S, Muehlbrandt, S, et al.. Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s. Opt Express 2015;23:9938–46. https://doi.org/10.1364/oe.23.009938.Suche in Google Scholar

190. Mason, DR, Gramotnev, DK, Kim, KS. Wavelength-dependent transmission through sharp 90° bends in sub-wavelength metallic slot waveguides. Opt Express 2010;18:16139–45. https://doi.org/10.1364/oe.18.016139.Suche in Google Scholar

191. Bozhevolnyi, SI. Plasmonic nanoguides and circuits. Singapore: Pan Stanford.Suche in Google Scholar

192. Veronis, G, Yu, Z, Kocabas, SE, Miller, DA, Brongersma, ML, Fan, S. Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale. Chin Opt Lett 2009;7:302–8. https://doi.org/10.3788/col20090704.0302.Suche in Google Scholar

193. Matsuzaki, Y, Okamoto, T, Haraguchi, M, Fukui, M, Nakagaki, M. Characteristics of gap plasmon waveguide with stub structures. Opt Express 2008;16:16314–25. https://doi.org/10.1364/oe.16.016314.Suche in Google Scholar PubMed

194. Editorial. Commercializing plasmonics. Nat Photonics 2015;9:477.10.1038/nphoton.2015.149Suche in Google Scholar

Received: 2021-01-11
Accepted: 2022-04-06
Published Online: 2022-05-02
Published in Print: 2024-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Amplifiers
  3. Performance analysis of long band passive optical network using amplifier spontaneous noise and fiber Bragg gratings
  4. Raman pumps power distribution optimization for maximum overall gain and flatness of a hybrid SOA/EDFA/Raman optical amplifier
  5. Devices
  6. A proposal for all optical digital multiplexer using photonic crystal-based nonlinear ring resonators
  7. A tunable optical frequency comb source using cascaded frequency modulator and Mach–Zehnder modulators
  8. A proposal for gray to BCD converter using nonlinear ring resonators
  9. An investigation and analysis of plasmonic modulators: a review
  10. Fibers
  11. High data-rate two-three inputs all-optical AND gate based on FWM in highly nonlinear fiber
  12. Fiber nonlinear impairments compensation based on nonlinear step size and modified adaptive digital back propagation
  13. Integrated Optics
  14. Sensing performance of Au–Ag bimetal coated planar waveguide having polyaniline polymer film for biosensing applications
  15. Networks
  16. Performance analysis of wavelength division multiplexing MDM-PON system using different advanced modulations
  17. Analysis of optical networks in presence of nodes noise and crosstalk
  18. RNN based EPON dynamic bandwidth allocation algorithm for complex network
  19. Efficient design of a Raman amplified wavelength division multiplexed communication network at 1330 nm
  20. A novel strategy to enhance the quality of service (QoS) for data center traffic in elastic optical networks
  21. Receivers
  22. Underwater wireless optical communication utilizing multiple input–multiple output (MIMO)-LED system for RF transmission with solar panel receiver
  23. A systematic literature review on channel estimation in MIMO-OFDM system: performance analysis and future direction
  24. Systems
  25. Effect of optical pulse shaping and adaptive equalization on the performance of 100G DP-QPSK WDM system
  26. Pulse width shortening combinations (PWSC) for ultra-dense WDM systems and calculation of PWSE
  27. Power allocation scheme in MIMO-OFDM UWOC system with varying receiver spacing channel gain analysis
  28. Free-space optical link optimization in visible light communication system
  29. Determining code parameters to achieve the maximum bandwidth efficiency in fiber-optic CDMA systems
  30. Optical wireless communication under the effect of low electric field
  31. Multibeam FSO-based 5G communication system using M-ary DPSK encoder
  32. Review of fibreless optical communication technology: history, evolution, and emerging trends
  33. Theory
  34. Throughput analysis of dual hop hybrid RF-VLC system with wireless energy harvesting
  35. Average spectral efficiency of multi-pulse position with adaptive transmissions and aperture averaging over atmospheric turbulence
  36. Dynamic changes of VN resource requests research on dynamic VN mapping algorithms for increasing demand for resources
Heruntergeladen am 1.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2021-0264/pdf
Button zum nach oben scrollen