Abstract
Plasmonics is an emerging and very advantageous technology which provides high speed and tiny size devices for fulfilling the demand of today’s high-speed world. SPPs are the information carrying elements in plasmonics, which are capable of breaking the diffraction limit. Plasmonics technology has shown its application in uncountable nanophotonic applications like switching, filtering, light modulation, sensing and in many more fields. Modulators are the key components of integrated photonic system. Various modulators which work on different effects are discussed in this study for providing a universal idea of modulators to researchers. Some useful plasmonic active materials are also discussed which are used in most of plasmonic modulators and other active devices. Previously, many researchers have worked on many kinds of modulators and switches, which operate on different kind of operating principles. For providing an overview about plasmonic modulators, their classification and their operation, we have discussed the state of art of some previously introduced modulators and switches which operates on electro-refractive effects and include electro-optic effect, Pockels effect, free charge carrier dispersion effect, phase change effect, elasto-optic effect, magneto-optic effect, and thermo-optic effect. Instead of different effects used in plasmonic switches and modulators different active materials like liquid crystals, graphene, vanadium di-oxide, chalcogenides, polymers, indium tin oxide, bismuth ferrite, barium titanate, and lithium niobate are also explained with their properties. Additionally, we also compared modulators based on different effects in terms of their design characteristics and performances.
Funding source: Shoolini University
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work is supported by Shoolini University, Solan (India).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Gramotnev, DK, Bozhevolnyi, SI. Plasmonics beyond the diffraction limit. Nat Photonics 2010;4:83–91. https://doi.org/10.1038/nphoton.2009.282.Suche in Google Scholar
2. Chauhan, D, Adhikari, R, Saini, RK, Chang, SH, Dwivedi, RP. Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure. Optik 2020;223:165545. https://doi.org/10.1016/j.ijleo.2020.165545.Suche in Google Scholar
3. Si, G, Zhao, Y, Leong, ES, Liu, YJ. Liquid-crystal-enabled active plasmonics: a review. Materials 2014;7:1296–317. https://doi.org/10.3390/ma7021296.Suche in Google Scholar PubMed PubMed Central
4. Schuller, JA, Barnard, ES, Cai, W, Jun, YC, White, JS, Brongersma, ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010;9:193–204. https://doi.org/10.1038/nmat2630.Suche in Google Scholar PubMed
5. Cai, W, White, JS, Brongersma, ML. Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett 2009;9:4403–11. https://doi.org/10.1021/nl902701b.Suche in Google Scholar PubMed
6. MacDonald, KF, Sámson, ZL, Stockman, MI, Zheludev, NI. Ultrafast active plasmonics. Nat Photonics 2009;3:55–8. https://doi.org/10.1038/nphoton.2008.249.Suche in Google Scholar
7. Temnov, VV, Razdolski, I, Pezeril, T, Makarov, D, Seletskiy, D, Melnikov, A, et al.. Towards the nonlinear acousto-magneto-plasmonics. J Opt 2016;18: 093002. https://doi.org/10.1088/2040-8978/18/9/093002.Suche in Google Scholar
8. Briggs, RM, Grandidier, J, Burgos, SP, Feigenbaum, E, Atwater, HA. Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. Nano Lett 2010;10:4851–7. https://doi.org/10.1021/nl1024529.Suche in Google Scholar PubMed
9. Kumar, A, Gosciniak, J, Volkov, VS, Papaioannou, S, Kalavrouziotis, D, Vyrsokinos, K, et al.. Dielectric‐loaded plasmonic waveguide components: going practical. Laser Photon Rev 2013;7:938–51. https://doi.org/10.1002/lpor.201200113.Suche in Google Scholar
10. Emboras, A, Briggs, RM, Najar, A, Nambiar, S, Delacour, C, Grosse, P, et al.. Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides. Appl Phys Lett 2012;101:251117. https://doi.org/10.1063/1.4772941.Suche in Google Scholar
11. Holmgaard, T, Bozhevolnyi, SI. Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 2007;75:245405. https://doi.org/10.1103/physrevb.75.245405.Suche in Google Scholar
12. Melikyan, A, Kohl, M, Sommer, M, Koos, C, Freude, W, Leuthold, J. Photonic-to-plasmonic mode converter. Opt Lett 2014;39:3488–91. https://doi.org/10.1364/ol.39.003488.Suche in Google Scholar PubMed
13. Yang, F, Sambles, JR, Bradberry, GW. Long-range surface modes supported by thin films. Phys Rev B 1991;44:5855. https://doi.org/10.1103/physrevb.44.5855.Suche in Google Scholar PubMed
14. Krasavin, AV, Zayats, AV. Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett 2007;90:211101. https://doi.org/10.1063/1.2740485.Suche in Google Scholar
15. Zia, R, Selker, MD, Catrysse, PB, Brongersma, ML. Geometries and materials for subwavelength surface plasmon modes. JOSA A 2004;21:2442–6. https://doi.org/10.1364/josaa.21.002442.Suche in Google Scholar PubMed
16. Jiang, N, Zhuo, X, Wang, J. Active plasmonics: principles, structures, and applications. Chem Rev 2017;118:3054–99. https://doi.org/10.1021/acs.chemrev.7b00252.Suche in Google Scholar PubMed
17. Kuhlow, B. Modulators. Laser fundamentals part 2. Berlin, Heidelberg: Springer; 2006.Suche in Google Scholar
18. Brosi, JM, Koos, C, Andreani, LC, Waldow, M, Leuthold, J, Freude, W. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt Express 2008;16:4177–91. https://doi.org/10.1364/oe.16.004177.Suche in Google Scholar PubMed
19. Emboras, A, Hoessbacher, C, Haffner, C, Heni, W, Koch, U, Ma, P, et al.. Electrically controlled plasmonic switches and modulators. IEEE J Sel Top Quant Electron 2014;21:276–83.10.1109/JSTQE.2014.2382293Suche in Google Scholar
20. Yariv, A, Yeh, P. Optical waves in crystals. New York: Wiley; 1984.Suche in Google Scholar
21. Ghatak, AK, Thyagarajan, K, Tiyākarācan, K, Thyagarajan, TK. Optical electronics. Cambridge University Press; 1989.10.1017/CBO9781139167857Suche in Google Scholar
22. Dolfi, DW, Ranganath, TR. 50 GHz velocity-matched broad wavelength LiNbO/sub 3/modulator with multimode active section. Electron Lett 1992;28:1197–8. https://doi.org/10.1049/el:19920756.10.1049/el:19920756Suche in Google Scholar
23. Randhawa, S, Lachèze, S, Renger, J, Bouhelier, A, de Lamaestre, RE, Dereux, A, et al.. Performance of electro-optical plasmonic ring resonators at telecom wavelengths. Opt Express 2012;20:2354–62. https://doi.org/10.1364/oe.20.002354.Suche in Google Scholar PubMed
24. Jacobsen, RS, Andersen, KN, Borel, PI, Fage-Pedersen, J, Frandsen, LH, Hansen, O, et al.. Strained silicon as a new electro-optic material. Nature 2006;441:199–202. https://doi.org/10.1038/nature04706.Suche in Google Scholar PubMed
25. Soref, RI, Bennett, BR. Electrooptical effects in silicon. IEEE J Quant Electron 1987;23:123–9. https://doi.org/10.1109/jqe.1987.1073206.Suche in Google Scholar
26. Cardwell, DA, Ginley, DS, editors. Handbook of superconducting materials. Boca Raton: CRC Press; 2003.10.1887/0750308982Suche in Google Scholar
27. Luennemann, M, Hartwig, U, Panotopoulos, G, Buse, K. Electrooptic properties of lithium niobate crystals for extremely high external electric fields. Appl Phys B 2003;76:403–6. https://doi.org/10.1007/s00340-003-1123-9.Suche in Google Scholar
28. Zhang, X, Izutsu, M, Kumagai, H, Toyoda, K. Femtosecond optical Kerr studies of photodarkening effect on nonlinear optical properties of CdSxSe1− x doped glass. Opt Commun 1997;142:273–8. https://doi.org/10.1016/s0030-4018(97)00276-9.Suche in Google Scholar
29. Yariv, A. Optical electronics, 4th ed. USA: Saunders College Publishing CO; 1991.Suche in Google Scholar
30. Dwivedi, RP, Lee, EH. A compact plasmonic tunable filter using elasto-optic effects. Opt Laser Technol 2012;44:2130–4. https://doi.org/10.1016/j.optlastec.2012.03.014.Suche in Google Scholar
31. Dwivedi, RP, Lee, HS, Song, JH, An, S, Lee, EH. Plasmonic modulator utilizing three parallel metal–dielectric–metal waveguide directional coupler and elasto-optic effects. Opt Commun 2011;284:1418–23. https://doi.org/10.1016/j.optcom.2010.10.038.Suche in Google Scholar
32. Vaidya, T, Chauhan, D, Mola, GT, Dwivedi, RP. An ultra-compact plasmonic modulator using elasto-optic effect and resonance phenomena. J Opt Commun 2020;1:1–11. https://doi.org/10.1515/joc-2019-0243.Suche in Google Scholar
33. Chauhan, D, Mola, GT, Dwivedi, RP. An ultra-compact plasmonic Modulator/Switch using VO2 and elasto-optic effect. Optik 2020;201:163531. https://doi.org/10.1016/j.ijleo.2019.163531.Suche in Google Scholar
34. Vaidya, T, Chauhan, D, Lee, HI, Lee, C, Dwivedi, RP. An ultra-compact optical modulator using indium tin oxide material and metal-dielectric-metal waveguide structure. IJEAT 2019;8:463–6. https://doi.org/10.35940/ijeat.e7859.088619.Suche in Google Scholar
35. Reed, GT, Mashanovich, G, Gardes, FY, Thomson, DJ. Silicon optical modulators. Nat Photonics 2010;4:518–26. https://doi.org/10.1038/nphoton.2010.179.Suche in Google Scholar
36. Yang, L, Ding, J. High-speed silicon Mach–Zehnder optical modulator with large optical bandwidth. J Lightwave Technol 2014;32:966–70. https://doi.org/10.1109/jlt.2013.2295401.Suche in Google Scholar
37. Ayoub, AB, Swillam, MA. High performance silicon Mach-Zehnder interferometer based photonic modulator. In: 2017 International applied computational electromagnetics society symposium (ACES). Italy: IEEE; 2017:1–2 pp.10.23919/ROPACES.2017.7916022Suche in Google Scholar
38. Xu, Q, Schmidt, B, Pradhan, S, Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 2005;435:325–7. https://doi.org/10.1038/nature03569.Suche in Google Scholar PubMed
39. Soref, RI, Bennett, BR. Electrooptical effects in silicon. IEEE J Quant Electron 1987;23:123–9. https://doi.org/10.1109/jqe.1987.1073206.Suche in Google Scholar
40. Png, CE, Chan, SP, Lim, ST, Reed, GT. Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI). J Lightwave Technol 2004;22:1573. https://doi.org/10.1109/jlt.2004.827655.Suche in Google Scholar
41. Liu, A, Jones, R, Liao, L, Rubin, S-RDD, Cohen, O, Nicolaescu, R, et al.. A high speed silicon optical modulator based on a metal oxide semiconductor capacitor. Nature 2004;427:615–8. https://doi.org/10.1038/nature02310.Suche in Google Scholar PubMed
42. Yu, H, Pantouvaki, M, Van Campenhout, J, Korn, D, Komorowska, K, Dumon, P, et al.. Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators. Opt Express 2012;20:12926–38. https://doi.org/10.1364/oe.20.012926.Suche in Google Scholar PubMed
43. Dionne, JA, Diest, K, Sweatlock, LA, Atwater, HA. PlasMOStor: a metal− oxide− Si field effect plasmonic modulator. Nano Lett 2009;9:897–902. https://doi.org/10.1021/nl803868k.Suche in Google Scholar PubMed
44. Melikyan, A, Lindenmann, N, Walheim, S, Leufke, PM, Ulrich, S, Ye, J, et al.. Surface plasmon polariton absorption modulator. Opt Express 2011;19:8855–69. https://doi.org/10.1364/oe.19.008855.Suche in Google Scholar PubMed
45. Sorger, VJ, Lanzillotti-Kimura, ND, Ma, RM, Zhang, X. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 2012;1:17–22. https://doi.org/10.1515/nanoph-2012-0009.Suche in Google Scholar
46. Won, R. Integrating silicon photonics. Nat Photonics 2010;4:498–9. https://doi.org/10.1038/nphoton.2010.189.Suche in Google Scholar
47. Liao, L, Liu, A, Rubin, D, Basak, JA, Chetrit, YA, Nguyen, HA, et al.. 40 Gbit/s silicon optical modulator for high-speed applications. Electron Lett 2007;43:1196–7. https://doi.org/10.1049/el:20072253.10.1049/el:20072253Suche in Google Scholar
48. Kirchain, R, Kimerling, L. A roadmap for nanophotonics. Nat Photonics 2007;1:303–5. https://doi.org/10.1038/nphoton.2007.84.Suche in Google Scholar
49. Briggs, RM, Pryce, IM, Atwater, HA. Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Opt Express 2010;18:11192–201. https://doi.org/10.1364/oe.18.011192.Suche in Google Scholar
50. Dwivedi, RP, Sharma, D, Lee, C, Vaidya, T. A plasmonic switch using metal-insulator transition in VO2. J Optoelectron Adv Mater 2016;18:207–12.Suche in Google Scholar
51. Sun, M, Shieh, W, Unnithan, RR. Design of plasmonic modulators with vanadium dioxide on silicon-on-insulator. IEEE Photon J 2017;9:1–0. https://doi.org/10.1109/jphot.2017.2690448.Suche in Google Scholar
52. Wong, HM, Helmy, AS. Performance enhancement of nanoscale VO 2 modulators using hybrid plasmonics. J Lightwave Technol 2017;36:797–808.10.1109/JLT.2017.2782707Suche in Google Scholar
53. Kim, JT. CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition. Opt Lett 2014;39:3997–4000. https://doi.org/10.1364/ol.39.003997.Suche in Google Scholar PubMed
54. Kim, JT. Silicon optical modulators based on tunable plasmonic directional couplers. IEEE J Sel Top Quant Electron 2014;21:184–91.10.1109/JSTQE.2014.2346623Suche in Google Scholar
55. Paroli, P. Magneto-optical devices based on garnet films. Thin Solid Films 1984;114:187–219. https://doi.org/10.1016/0040-6090(84)90340-7.Suche in Google Scholar
56. Irvine, SE, Elezzabi, AY. Modeling of high-speed magnetooptic beam deflection. IEEE J Quant Electron 2002;38:1428–35. https://doi.org/10.1109/jqe.2002.802953.Suche in Google Scholar
57. Irvine, SE, Elezzabi, AY. Wideband magneto-optic modulation in a bismuth-substituted yttrium iron garnet waveguide. Opt Commun 2003;220:325–9. https://doi.org/10.1016/s0030-4018(03)01416-0.Suche in Google Scholar
58. Young, D, Tsai, CS. GHz bandwidth magneto‐optic interaction in yttrium iron garnet‐gadolinium gallium garnet waveguide using magnetostatic forward volume waves. Appl Phys Lett 1988;53:1696–8. https://doi.org/10.1063/1.99800.Suche in Google Scholar
59. Dotsch, H, Hertel, P, Luhrmann, B, Sure, S, Winkler, HP, Ye, M. Applications of magnetic garnet films in integrated optics. IEEE Trans Magn 1992;28:2979–84. https://doi.org/10.1109/20.179691.Suche in Google Scholar
60. Prabhakar, A, Stancil, DD. Wideband optical modulation via the magneto–optic interaction in a bismuth-lutetium-iron garnet film. Appl Phys Lett 1997;71:151–3. https://doi.org/10.1063/1.119487.Suche in Google Scholar
61. Chau, KJ, Irvine, SE, Elezzabi, AY. A gigahertz surface magneto-plasmon optical modulator. IEEE J Quant Electron 2004;40:571–9. https://doi.org/10.1109/jqe.2004.826422.Suche in Google Scholar
62. Kerr, JXLIII. On rotation of the plane of polarization by reflection from the pole of a magnet. London Edinburgh Dublin Phil Mag J Sci 1877;3:321–43.https://doi.org/10.1080/14786447708639245.Suche in Google Scholar
63. Ando, K. Springer-verlag series in solid-state science. In: Sugano, S, Kojima, N, editors. Magneto-optics, vol 128. Berlin: Springer; 2000. 211–44 pp.10.1007/978-3-662-04143-7_7Suche in Google Scholar
64. Irvine, SE, Elezzabi, AY. A miniature broadband bismuth-substituted yttrium iron garnet magneto-optic modulator. J Phys Appl Phys 2003;36:2218. https://doi.org/10.1088/0022-3727/36/18/007.Suche in Google Scholar
65. Park, JH, Takagi, H, Cho, JK, Nishimura, K, Uchida, H, Inoue, M. Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy. IEEE Trans Magn 2004;40:3045–7. https://doi.org/10.1109/tmag.2004.833235.Suche in Google Scholar
66. Chau, KJ, Irvine, SE, Elezzabi, AY. A gigahertz surface magneto-plasmon optical modulator. IEEE J Quant Electron 2004;40:571–9. https://doi.org/10.1109/jqe.2004.826422.Suche in Google Scholar
67. Khatir, M, Granpayeh, N. Magneto-optic surface plasmon polariton modulator based on refractive index variations. Appl Opt 2014;53:2539–47. https://doi.org/10.1364/ao.53.002539.Suche in Google Scholar PubMed
68. Haddadpour, A, Nezhad, VF, Yu, Z, Veronis, G. Highly compact magneto-optical switches for metal-dielectric-metal plasmonic waveguides. Opt Lett 2016;41:4340–3. https://doi.org/10.1364/ol.41.004340.Suche in Google Scholar
69. Gosciniak, J, Bozhevolnyi, SI, Andersen, TB, Volkov, VS, Kjelstrup-Hansen, J, Markey, L, et al.. Thermo-optic control of dielectric-loaded plasmonic waveguide components. Opt Express 2010;18:1207–16. https://doi.org/10.1364/oe.18.001207.Suche in Google Scholar
70. Bozhevolnyi, SI. Dynamic components utilizing long-range surface plasmon polaritons. In: Nanophotonics with surface plasmons. Amsterdam: Elsevier; 2007:1–34 pp.10.1016/B978-044452838-4/50002-3Suche in Google Scholar
71. Sincerbox, GT, Gordon, JC. Small fast large-aperture light modulator using attenuated total reflection. Appl Opt 1981;20:1491–6. https://doi.org/10.1364/ao.20.001491.Suche in Google Scholar PubMed
72. Solgaard, O, Ho, F, Thackara, JI, Bloom, DM. High frequency attenuated total internal reflection light modulator. Appl Phys Lett 1992;61:2500–2. https://doi.org/10.1063/1.108161.Suche in Google Scholar
73. Holmgaard, T, Chen, Z, Bozhevolnyi, SI, Markey, L, Dereux, A, Krasavin, AV, et al.. Wavelength selection by dielectric-loaded plasmonic components. Appl Phys Lett 2009;94: 051111. https://doi.org/10.1063/1.3078235.Suche in Google Scholar
74. Gosciniak, J, Bozhevolnyi, SI. Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides. Sci Rep 2013;3:1803. https://doi.org/10.1038/srep01803.Suche in Google Scholar
75. Raether, H. Surface plasmons on smooth surfaces. In: Surface plasmons on smooth and rough surfaces and on gratings. Berlin, Heidelberg: Springer; 1988. 4–39 pp.10.1007/BFb0048319Suche in Google Scholar
76. Sarid, D. Long-range surface-plasma waves on very thin metal films. Phys Rev Lett 1981;47:1927. https://doi.org/10.1103/physrevlett.47.1927.Suche in Google Scholar
77. Burke, JJ, Stegeman, GI, Tamir, T. Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 1986;33:5186. https://doi.org/10.1103/physrevb.33.5186.Suche in Google Scholar PubMed
78. Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 2000;61:10484. https://doi.org/10.1103/physrevb.61.10484.Suche in Google Scholar
79. Charbonneau, R, Berini, P, Berolo, E, Lisicka-Shrzek, E. Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width. Opt Lett 2000;25:844–6. https://doi.org/10.1364/ol.25.000844.Suche in Google Scholar PubMed
80. Nikolajsen, T, Leosson, K, Bozhevolnyi, SI. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl Phys Lett 2004;85:5833–5. https://doi.org/10.1063/1.1835997.Suche in Google Scholar
81. Gosciniak, J, Markey, L, Dereux, A, Bozhevolnyi, SI. Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides. Opt Express 2012;20:16300–9. https://doi.org/10.1364/oe.20.016300.Suche in Google Scholar
82. Dickson, W, Wurtz, GA, Evans, PR, Pollard, RJ, Zayats, AV. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett 2008;8:281–6. https://doi.org/10.1021/nl072613g.Suche in Google Scholar PubMed
83. Liu, YJ, Hao, Q, Smalley, JS, Liou, J, Khoo, IC, Huang, TJ. A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. Appl Phys Lett 2010;97: 091101. https://doi.org/10.1063/1.3483156.Suche in Google Scholar
84. Liu, YJ, Zheng, YB, Shi, J, Huang, H, Walker, TR, Huang, TJ. Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals. Opt Lett 2009;34:2351–3. https://doi.org/10.1364/ol.34.002351.Suche in Google Scholar PubMed
85. Hsiao, VK, Zheng, YB, Juluri, BK, Huang, TJ. Light‐driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals. Adv Mater 2008;20:3528–32. https://doi.org/10.1002/adma.200800045.Suche in Google Scholar
86. Chu, KC, Chao, CY, Chen, YF, Wu, YC, Chen, CC. Electrically controlled surface plasmon resonance frequency of gold nanorods. Appl Phys Lett 2006;89:103107. https://doi.org/10.1063/1.2335812.Suche in Google Scholar
87. Zografopoulos, DC, Beccherelli, R. Long-range plasmonic directional coupler switches controlled by nematic liquid crystals. Opt Express 2013;21:8240–50. https://doi.org/10.1364/oe.21.008240.Suche in Google Scholar
88. Zografopoulos, DC, Beccherelli, R. Liquid-crystal-tunable metal–insulator–metal plasmonic waveguides and Bragg resonators. J Opt 2013;15: 055009. https://doi.org/10.1088/2040-8978/15/5/055009.Suche in Google Scholar
89. Zografopoulos, DC, Beccherelli, R, Tasolamprou, AC, Kriezis, EE. Liquid–crystal tunable waveguides for integrated plasmonic components. Photonics Nanostruct Fund Appl 2013;11:73–84. https://doi.org/10.1016/j.photonics.2012.08.004.Suche in Google Scholar
90. Si, G, Zhao, Y, Lv, J, Lu, M, Wang, F, Liu, H, et al.. Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 2013;5:6243–8. https://doi.org/10.1039/c3nr01419c.Suche in Google Scholar PubMed
91. Si, G, Zhao, Y, Liu, H, Teo, S, Zhang, M, Jun Huang, T, et al.. Annular aperture array-based color filter. Appl Phys Lett 2011;99: 033105. https://doi.org/10.1063/1.3608147.Suche in Google Scholar
92. Liu, YJ, Si, GY, Leong, ES, Xiang, N, Danner, AJ, Teng, JH. Light‐driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv Mater 2012;24:O131–5. https://doi.org/10.1002/adma.201104440.Suche in Google Scholar PubMed
93. Si, G, Teo, EJ, Bettiol, AA, Teng, J, Danner, AJ. Suspended slab and photonic crystal waveguides in lithium niobate. J Vac Sci Technol, B Nanotechnol Microelectron 2010;28:316–20. https://doi.org/10.1116/1.3327925.Suche in Google Scholar
94. Dickson, W, Evans, PR, Wurtz, GA, Hendren, W, Atkinson, R, Pollard, RJ, et al.. Towards nonlinear plasmonic devices based on metallic nanorods. J Microsc 2008;229:415–20. https://doi.org/10.1111/j.1365-2818.2008.01921.x.Suche in Google Scholar PubMed
95. Liu, YJ, Si, GY, Leong, ES, Wang, B, Danner, AJ, Yuan, XC, et al.. Optically tunable plasmonic color filters. Appl Phys A 2012;107:49–54. https://doi.org/10.1007/s00339-011-6736-y.Suche in Google Scholar
96. He, J, Huang, X, Li, YC, Liu, Y, Babu, T, Aronova, MA, et al.. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. J Am Chem Soc 2013;135:7974–84. https://doi.org/10.1021/ja402015s.Suche in Google Scholar PubMed
97. Gandra, N, Abbas, A, Tian, L, Singamaneni, S. Plasmonic planet–satellite analogues: hierarchical self-assembly of gold nanostructures. Nano Lett 2012;12:2645–51. https://doi.org/10.1021/nl3012038.Suche in Google Scholar PubMed
98. Simoni, F. Nonlinear optical properties of LC and PDLC. Italy: World Scientific; 1997.Suche in Google Scholar
99. Alavi, SM, Armand, H. Liquid crystal-based dielectric-loaded plasmonic ring resonator filter. ACES; 2015;30:245–54.Suche in Google Scholar
100. Wu, ST, Efron, U. Optical properties of thin nematic liquid crystal cells. Appl Phys Lett 1986;48:624–6. https://doi.org/10.1063/1.96724.Suche in Google Scholar
101. Hao, Q, Zhao, Y, Juluri, BK, Kiraly, B, Liou, J, Khoo, IC, et al.. Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals. J Appl Phys 2011;109: 084340. https://doi.org/10.1063/1.3581037.Suche in Google Scholar
102. Li, XV, Cole, RM, Milhano, CA, Bartlett, PN, Soares, BF, Baumberg, JJ, et al.. The fabrication of plasmonic Au nanovoid trench arrays by guided self-assembly. Nanotechnology 2009;20:285309. https://doi.org/10.1088/0957-4484/20/28/285309.Suche in Google Scholar PubMed
103. Khoo, IC. Nonlinear optics of liquid crystalline materials. Phys Rep 2009;471:221–67. https://doi.org/10.1016/j.physrep.2009.01.001.Suche in Google Scholar
104. Bonaccorso, F, Sun, Z, Hasan, TA, Ferrari, AC. Graphene photonics and optoelectronics. Nat Photonics 2010;4:611. https://doi.org/10.1038/nphoton.2010.186.Suche in Google Scholar
105. Grigorenko, AN, Polini, M, Novoselov, KS. Graphene plasmonics. Nat Photonics 2012;6:749–58. https://doi.org/10.1038/nphoton.2012.262.Suche in Google Scholar
106. Hanson, GW. Erratum: “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene” [J. Appl. Phys. 103, 064302 (2008)]. J Appl Phys 2013;113: 029902.https://doi.org/10.1063/1.4776680.Suche in Google Scholar
107. Gan, CH, Chu, HS, Li, EP. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys Rev B 2012;85:125431. https://doi.org/10.1103/physrevb.85.125431.Suche in Google Scholar
108. Christensen, J, Manjavacas, A, Thongrattanasiri, S, Koppens, FH, García de Abajo, FJ. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 2012;6:431–40. https://doi.org/10.1021/nn2037626.Suche in Google Scholar PubMed
109. Kim, JT, Chung, KH, Choi, CG. Thermo-optic mode extinction modulator based on graphene plasmonic waveguide. Opt Express 2013;21:15280–6. https://doi.org/10.1364/oe.21.015280.Suche in Google Scholar PubMed
110. Kim, JT, Choi, SY. Graphene-based plasmonic waveguides for photonic integrated circuits. Opt Express 2011;19:24557–62. https://doi.org/10.1364/oe.19.024557.Suche in Google Scholar PubMed
111. Patel, SK, Sorathiya, V, Sbeah, Z, Lavadiya, S, Nguyen, TK, Dhasarathan, V. Graphene-based tunable infrared multi band absorber. Opt Commun 2020;474:126109. https://doi.org/10.1016/j.optcom.2020.126109.Suche in Google Scholar
112. Liu, M, Yin, X, Ulin-Avila, E, Geng, B, Zentgraf, T, Ju, L, et al.. A graphene-based broadband optical modulator. Nature 2011;474:64–7. https://doi.org/10.1038/nature10067.Suche in Google Scholar PubMed
113. Kim, K, Choi, JY, Kim, T, Cho, SH, Chung, HJ. A role for graphene in silicon-based semiconductor devices. Nature 2011;479:338–44. https://doi.org/10.1038/nature10680.Suche in Google Scholar PubMed
114. Liu, M, Yin, X, Zhang, X. Double-layer graphene optical modulator. Nano Lett 2012;12:1482–5. https://doi.org/10.1021/nl204202k.Suche in Google Scholar PubMed
115. Li, W, Chen, B, Meng, C, Fang, W, Xiao, Y, Li, X, et al.. Ultrafast all-optical graphene modulator. Nano Lett 2014;14:955–9. https://doi.org/10.1021/nl404356t.Suche in Google Scholar PubMed
116. Youngblood, N, Anugrah, Y, Ma, R, Koester, SJ, Li, M. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett 2014;14:2741–6. https://doi.org/10.1021/nl500712u.Suche in Google Scholar PubMed
117. Mueller, T, Xia, F, Avouris, P. Graphene photodetectors for high-speed optical communications. Nat Photonics 2010;4:297–301. https://doi.org/10.1038/nphoton.2010.40.Suche in Google Scholar
118. Liu, M, Yin, X, Ulin-Avila, E, Geng, B, Zentgraf, T, Ju, L, et al.. A graphene-based broadband optical modulator. Nature 2011;474:64–7. https://doi.org/10.1038/nature10067.Suche in Google Scholar PubMed
119. Bao, Q, Zhang, H, Wang, B, Ni, Z, Lim, CH, Wang, Y, et al.. Broadband graphene polarizer. Nat Photonics 2011;5:411–5. https://doi.org/10.1038/nphoton.2011.102.Suche in Google Scholar
120. Gan, S, Cheng, C, Zhan, Y, Huang, B, Gan, X, Li, S, et al.. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale 2015;7:20249–55. https://doi.org/10.1039/c5nr05084g.Suche in Google Scholar PubMed
121. Liu, Z, Liu, B, Xu, G, Ho, ST, Tang, P, Meier, AL, et al.. Barium titanate thin film electro-optic modulator with low half-wave voltage at 1310nm. In: Conference on lasers and electro-optics. Optical Society of America; 2005. CThS4 p.Suche in Google Scholar
122. Dicken, MJ, Sweatlock, LA, Pacifici, D, Lezec, HJ, Bhattacharya, K, Atwater, HA. Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett 2008;8:4048–52. https://doi.org/10.1021/nl802981q.Suche in Google Scholar PubMed
123. Werbowy, A, Firek, P, Kwietniewski, N, Olszyna, A. Reactive impulse plasma ablation deposited barium titanate thin films on silicon. In: Electron technology conference 2013, vol 8902. International Society for Optics and Photonics; 2013. 89022O p.10.1117/12.2031267Suche in Google Scholar
124. Galler, N, Ditlbacher, H, Steinberger, B, Hohenau, A, Dansachmüller, M, Camacho-Gonzales, F, et al.. Electrically actuated elastomers for electro–optical modulators. Appl Phys B 2006;85:7–10. https://doi.org/10.1007/s00340-006-2434-4.Suche in Google Scholar
125. Choi, SG, Yi, HT, Cheong, SW, Hilfiker, JN, France, R, Norman, AG. Optical anisotropy and charge-transfer transition energies in BiFeO3 from 1.0 to 5.5 eV. Phys Rev B 2011;83:100101. https://doi.org/10.1103/physrevb.83.100101.Suche in Google Scholar
126. Chu, SH, Singh, DJ, Wang, J, Li, EP, Ong, KP. High optical performance and practicality of active plasmonic devices based on rhombohedral BiFeO3. Laser Photon Rev 2012;6:684–9. https://doi.org/10.1002/lpor.201280022.Suche in Google Scholar
127. Babicheva, VE, Zhukovsky, SV, Lavrinenko, AV. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator. Opt Express 2014;22:28890–7. https://doi.org/10.1364/oe.22.028890.Suche in Google Scholar
128. Boyd, RW. Nonlinear optics. San Diego, Calif: Academic; 2008. p. 19922–39.Suche in Google Scholar
129. Wooten, EL, Kissa, KM, Yi-Yan, A, Murphy, EJ, Lafaw, DA, Hallemeier, PF, et al.. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quant Electron 2000;6:69–82. https://doi.org/10.1109/2944.826874.Suche in Google Scholar
130. Schmidt, RV, Kaminow, IP. Metal‐diffused optical waveguides in LiNbO3. Appl Phys Lett 1974;25:458–60. https://doi.org/10.1063/1.1655547.Suche in Google Scholar
131. Meng, Z, Zhou, H, Liao, Y, Yao, Q. Research on measurement of frequency shift characteristics based on LiNbO3 waveguide electro-optic intensity modulator. In: 2008 1st Asia-Pacific optical fiber sensors conference. IEEE; 2008. 1–5 pp.10.1109/APOS.2008.5226311Suche in Google Scholar
132. Kondo, J, Aoki, K, Kondo, A, Ejiri, T, Iwata, Y, Hamajima, A, et al.. High-speed and low-driving-Voltage thin-sheet X-cut LiNbO/sub 3/Modulator with laminated low-dielectric-constant adhesive. IEEE Photon Technol Lett 2005;17:2077–9. https://doi.org/10.1109/lpt.2005.856324.Suche in Google Scholar
133. Thomaschewski, M, Zenin, VA, Wolff, C, Bozhevolnyi, SI. Plasmonic monolithic lithium niobate directional coupler switches. Nat Commun 2020;11:1–6. https://doi.org/10.1038/s41467-020-14539-y.Suche in Google Scholar PubMed PubMed Central
134. West, PR, Ishii, S, Naik, GV, Emani, NK, Shalaev, VM. Boltasseva, a. Searching for better plasmonic materials. Laser Photon Rev 2010;4:795–808. https://doi.org/10.1002/lpor.200900055.Suche in Google Scholar
135. Feigenbaum, E, Diest, K, Atwater, HA. Unity-order index change in transparent conducting oxides at visible frequencies. Nano Lett 2010;10:2111–6. https://doi.org/10.1021/nl1006307.Suche in Google Scholar PubMed
136. Xiao, X, Xu, H, Li, X, Li, Z, Chu, T, Yu, Y, et al.. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt Express 2013;21:4116–25. https://doi.org/10.1364/oe.21.004116.Suche in Google Scholar
137. Lipson, M. Compact electro-optic modulators on a silicon chip. IEEE J Sel Top Quant Electron 2006;12:1520–6. https://doi.org/10.1109/jstqe.2006.885341.Suche in Google Scholar
138. Babicheva, VE, Lavrinenko, AV. Plasmonic modulator optimized by patterning of active layer and tuning permittivity. Opt Commun 2012;285:5500–7. https://doi.org/10.1016/j.optcom.2012.07.117.Suche in Google Scholar
139. Ye, C, Khan, S, Li, ZR, Simsek, E, Sorger, VJ. λ-size ITO and graphene-based electro-optic modulators on SOI. IEEE J Sel Top Quant Electron 2014;20:40–9. https://doi.org/10.1109/jstqe.2014.2298451.Suche in Google Scholar
140. Wegkamp, D, Stähler, J. Ultrafast dynamics during the photoinduced phase transition in VO2. Prog Surf Sci 2015;90:464–502. https://doi.org/10.1016/j.progsurf.2015.10.001.Suche in Google Scholar
141. Dicken, MJ, Aydin, K, Pryce, IM, Sweatlock, LA, Boyd, EM, Walavalkar, S, et al.. Frequency tunable near-infrared metamaterials based on VO 2 phase transition. Opt Express 2009;17:18330–9. https://doi.org/10.1364/oe.17.018330.Suche in Google Scholar PubMed
142. Verleur, HW, Barker, ASJr, Berglund, CN. Optical properties of V O 2 between 0.25 and 5 eV. Phys Rev 1968;172:788. https://doi.org/10.1103/physrev.172.788.Suche in Google Scholar
143. Wu, B, Zimmers, A, Aubin, H, Ghosh, R, Liu, Y, Lopez, R. Electric-field-driven phase transition in vanadium dioxide. Phys Rev B 2011;84:241410. https://doi.org/10.1103/physrevb.84.241410.Suche in Google Scholar
144. Lysenko, S, Rua, A, Fernandez, F, Liu, H. Optical nonlinearity and structural dynamics of VO 2 films. J Appl Phys 2009;105: 043502. https://doi.org/10.1063/1.3078141.Suche in Google Scholar
145. Chauhan, D, Kumar, A, Adhikari, R, Saini, RK, Chang, SH, Dwivedi, RP. High performance Vanadium di-oxide based active nano plasmonic filter and switch. Optik 2021;225:165672. https://doi.org/10.1016/j.ijleo.2020.165672.Suche in Google Scholar
146. Park, JB, Lee, IM, Lee, SY, Kim, K, Choi, D, Song, EY, et al.. Tunable subwavelength hot spot of dipole nanostructure based on VO 2 phase transition. Opt Express 2013;21:15205–12. https://doi.org/10.1364/oe.21.015205.Suche in Google Scholar PubMed
147. Cueff, S, Li, D, Zhou, Y, Wong, FJ, Kurvits, JA, Ramanathan, S, et al.. Dynamic control of light emission faster than the lifetime limit using VO 2 phase-change. Nat Commun 2015;6:1–6. https://doi.org/10.1038/ncomms9636.Suche in Google Scholar PubMed PubMed Central
148. Kadlec, F, Kadlec, C, Kužel, P. Contrast in terahertz conductivity of phase-change materials. Solid State Commun 2012;152:852–5. https://doi.org/10.1016/j.ssc.2012.02.018.Suche in Google Scholar
149. Shu, MJ, Zalden, P, Chen, F, Weems, B, Chatzakis, I, Xiong, F, et al.. Ultrafast terahertz-induced response of GeSbTe phase-change materials. Appl Phys Lett 2014;104:251907. https://doi.org/10.1063/1.4884816.Suche in Google Scholar
150. Ríos, C, Stegmaier, M, Hosseini, P, Wang, D, Scherer, T, Wright, CD, et al.. Integrated all-photonic non-volatile multi-level memory. Nat Photonics 2015;9:725–32.10.1038/nphoton.2015.182Suche in Google Scholar
151. Zheng, J, Khanolkar, A, Xu, P, Colburn, S, Deshmukh, S, Myers, J, et al.. GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform. Opt Mater Express 2018;8:1551–61. https://doi.org/10.1364/ome.8.001551.Suche in Google Scholar
152. Gholipour, B, Zhang, J, MacDonald, KF, Hewak, DW, Zheludev, NI. An all‐optical, non‐volatile, bidirectional, phase‐change meta‐switch. Adv Mater 2013;25:3050–4. https://doi.org/10.1002/adma.201300588.Suche in Google Scholar PubMed
153. Siegrist, T, Jost, P, Volker, H, Woda, M, Merkelbach, P, Schlockermann, C, et al.. Disorder-induced localization in crystalline phase-change materials. Nat Mater 2011;10:202–8. https://doi.org/10.1038/nmat2934.Suche in Google Scholar PubMed
154. Loke, D, Lee, TH, Wang, WJ, Shi, LP, Zhao, R, Yeo, YC, et al.. Breaking the speed limits of phase-change memory. Science 2012;336:1566–9. https://doi.org/10.1126/science.1221561.Suche in Google Scholar PubMed
155. Hosseini, P, Wright, CD, Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 2014;511:206–11. https://doi.org/10.1038/nature13487.Suche in Google Scholar PubMed
156. Chen, F, Sun, L, Zhang, H, Li, J, Yu, C. Tunable optical absorption based on plasmonic nanostructure assisted by phase-changing material. Optik 2019;189:72–80. https://doi.org/10.1016/j.ijleo.2019.05.082.Suche in Google Scholar
157. Stegmaier, M, Ríos, C, Bhaskaran, H, Wright, CD, Pernice, WH. Nonvolatile all‐optical 1× 2 switch for chipscale photonic networks. Adv Opt Mater 2017;5:1600346. https://doi.org/10.1002/adom.201600346.Suche in Google Scholar
158. Raoux, S, Xiong, F, Wuttig, M, Pop, E. Phase change materials and phase change memory. MRS Bull 2014;39:703–10. https://doi.org/10.1557/mrs.2014.139.Suche in Google Scholar
159. Singh, M, Raghuwanshi, SK, Srinivas, T. Nanophotonic on-chip hybrid plasmonic electro-optic modulator with phase change materials. Phys Lett 2019;383:3196–9. https://doi.org/10.1016/j.physleta.2019.07.004.Suche in Google Scholar
160. Zhang, Z, Yang, J, Bai, W, Han, Y, He, X, Zhang, J, et al.. Chipscale plasmonic modulators and switches based on metal–insulator–metal waveguides with Ge 2 Sb 2 Te 5. J Nanophotonics 2019;13: 046009. https://doi.org/10.1117/1.jnp.13.046009.Suche in Google Scholar
161. Yoshida, K, Kanda, Y, Kohjiro, S. A traveling-wave-type LiNbO/sub 3/optical modulator with superconducting electrodes. IEEE Trans Microw Theor Tech 1999;47:1201–5. https://doi.org/10.1109/22.775458.Suche in Google Scholar
162. DeRose, CT, Enami, Y, Loychik, C, Norwood, RA, Mathine, D, Fallahi, M, et al.. Pockel’s coefficient enhancement of poled electro-optic polymers with a hybrid organic-inorganic sol-gel cladding layer. Appl Phys Lett 2006;89:131102. https://doi.org/10.1063/1.2357157.Suche in Google Scholar
163. Enami, Y, Hong, J, Zhang, C, Luo, J, Jen, AK. Polymeric hybrid waveguide modulators with high optical stability and high electro-optic coefficient. In: Conference on lasers and electro-optics/Pacific Rim 2011 Aug 28. Optical Society of America; 2011. C395 p.10.1109/IQEC-CLEO.2011.6193786Suche in Google Scholar
164. Al-Tarawni, MA, Bakar, AA, Zain, AR. Design segmented slot waveguide for integrated waveguide modulator. In: 2016 IEEE international conference on semiconductor electronics (ICSE). IEEE; 2016. 43–6 pp.10.1109/SMELEC.2016.7573586Suche in Google Scholar
165. Cross, GH. Polymer devices and high bandwidth optoelectronics. In: IEE colloquium on plastics materials for optical transmission 1989 Nov 27. IET; 1989. 3–1 pp.Suche in Google Scholar
166. Eldada, L. Advances in polymer-based dynamic photonic components, modules, and subsystems. In: Passive components and fiber-based devices III 2006 Oct 3, vol 6351; 2006. International Society for Optics and Photonics. p. 63510Y.10.1117/12.689229Suche in Google Scholar
167. Taheri, AN, Kaatuzian, H. Design and simulation of a nanoscale electro-plasmonic 1× 2 switch based on asymmetric metal–insulator–metal stub filters. Appl Opt 2014;53:6546–53. https://doi.org/10.1364/ao.53.006546.Suche in Google Scholar
168. Jazbinsek, M, Mutter, L, Gunter, P. Photonic applications with the organic nonlinear optical crystal DAST. IEEE J Sel Top Quant Electron 2008;14:1298–311. https://doi.org/10.1109/jstqe.2008.921407.Suche in Google Scholar
169. Abdelatty, MY, Zaki, AO, Swillam, MA. Hybrid silicon plasmonic organic directional coupler-based modulator. Appl Phys A 2017;123:11. https://doi.org/10.1007/s00339-016-0656-9.Suche in Google Scholar
170. Li, J, Baird, G, Lin, YH, Ren, H, Wu, ST. Refractive‐index matching between liquid crystals and photopolymers. J Soc Inf Disp 2005;13:1017–26. https://doi.org/10.1889/1.2150371.Suche in Google Scholar
171. Wang, X, Chen, YP, Nolte, DD. Strong anomalous optical dispersion of graphene: complex refractive index measured by Picometrology. Opt Express 2008;16:22105–12. https://doi.org/10.1364/oe.16.022105.Suche in Google Scholar PubMed
172. Babicheva, VE, Lavrinenko, AV. A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core. Photon Lett Poland 2013;5:57–9. https://doi.org/10.4302/plp.2013.2.08.Suche in Google Scholar
173. Babicheva, VE, Zhukovsky, SV, Lavrinenko, AV. Nanophotonic modulator with bismuth ferrite as low-loss switchable material. In: CLEO: science and innovations 2015 May 10. Optical Society of America; 2015. JTu5A–72 pp.10.1364/CLEO_AT.2015.JTu5A.72Suche in Google Scholar
174. Alam, MZ, De Leon, I, Boyd, RW. Unity-order intensity-dependent change in refractive index in indium-tin oxide at its epsilon-near-zero wavelength. In: Nonlinear optics. Optical Society of America; 2015. NTu3A–2 pp.10.1364/NLO.2015.NTu3A.2Suche in Google Scholar
175. Zhu, S, Lo, GQ, Kwong, DL. Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators. Opt Express 2010;18:27802–19. https://doi.org/10.1364/oe.18.027802.Suche in Google Scholar PubMed
176. Melikyan, A, Alloatti, L, Muslija, A, Hillerkuss, D, Schindler, PC, Li, J, et al.. High-speed plasmonic phase modulators. Nat Photonics 2014;8:229–33. https://doi.org/10.1038/nphoton.2014.9.Suche in Google Scholar
177. Ansell, D, Radko, IP, Han, Z, Rodriguez, FJ, Bozhevolnyi, SI, Grigorenko, AN. Hybrid graphene plasmonic waveguide modulators. Nat Commun 2015;6:1–6. https://doi.org/10.1038/ncomms9846.Suche in Google Scholar PubMed PubMed Central
178. Gosciniak, J, Tan, DT. Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators. Nanotechnology 2013;24:185202. https://doi.org/10.1088/0957-4484/24/18/185202.Suche in Google Scholar PubMed
179. Chauhan, D, Jara, AD, Lee, C, Dwivedi, RP. An ultra-compact electrically controlled micro ring resonator for the application as tunable filter. Adv Sci Eng Med 2019;11:475–83. https://doi.org/10.1166/asem.2019.2393.Suche in Google Scholar
180. Sun, M, Earl, S, Shieh, W, Unnithan, RR. Design of a plasmonic modulator based on vanadium dioxide. University of Sydney, Australia: NUSOD; 2016.10.1109/IPCon.2017.8116015Suche in Google Scholar
181. Lin, C, Helmy, AS. Dynamically reconfigurable nanoscale modulators utilizing coupled hybrid plasmonics. Sci Rep 2015;5:1–0. https://doi.org/10.1038/srep12313.Suche in Google Scholar PubMed PubMed Central
182. Kamada, S, Okamoto, T, El-Zohary, SE, Haraguchi, M. Design optimization and fabrication of Mach-Zehnder interferometer based on MIM plasmonic waveguides. Opt Express 2016;24:16224–31. https://doi.org/10.1364/oe.24.016224.Suche in Google Scholar PubMed
183. Dennis, BS, Haftel, MI, Czaplewski, DA, Lopez, D, Blumberg, G, Aksyuk, V. Ultracompact nano-mechanical plasmonic phase modulators. arXiv preprint arXiv:1410.0273. 2014 Oct 1.Suche in Google Scholar
184. Min, C, Veronis, G. Theoretical investigation of fabrication related disorders on the properties of subwavelength metal dielectric-metal plasmonic waveguides. Opt Express 2010;18:20939–48. https://doi.org/10.1364/oe.18.020939.Suche in Google Scholar PubMed
185. Miyazaki, HT, Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. PRL 2006;96: 097401. https://doi.org/10.1103/PhysRevLett.96.097401.Suche in Google Scholar PubMed
186. Barwicz, T, Haus, HA. Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides. J Lightwave Technol 2005;23:2719. https://doi.org/10.1109/jlt.2005.850816.Suche in Google Scholar
187. Poulton, CG, Koos, C, Fujii, M, Pfrang, A, Schimmel, T, Leuthold, J, et al.. Radiation modes and roughness loss in high index-contrast waveguides. IEEE J Sel Top Quant Electron 2006;12:1306–21. https://doi.org/10.1109/jstqe.2006.881648.Suche in Google Scholar
188. Miller, KJ, Hallman, KA, Haglund, RF, Weiss, SM. Silicon waveguide modulator with embedded phase change material. arXiv preprint arXiv:1708.04297; 2017.10.1364/CLEO_SI.2017.STu3N.8Suche in Google Scholar
189. Melikyan, A, Köhnle, K, Lauermann, M, Palmer, R, Koeber, S, Muehlbrandt, S, et al.. Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s. Opt Express 2015;23:9938–46. https://doi.org/10.1364/oe.23.009938.Suche in Google Scholar
190. Mason, DR, Gramotnev, DK, Kim, KS. Wavelength-dependent transmission through sharp 90° bends in sub-wavelength metallic slot waveguides. Opt Express 2010;18:16139–45. https://doi.org/10.1364/oe.18.016139.Suche in Google Scholar
191. Bozhevolnyi, SI. Plasmonic nanoguides and circuits. Singapore: Pan Stanford.Suche in Google Scholar
192. Veronis, G, Yu, Z, Kocabas, SE, Miller, DA, Brongersma, ML, Fan, S. Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale. Chin Opt Lett 2009;7:302–8. https://doi.org/10.3788/col20090704.0302.Suche in Google Scholar
193. Matsuzaki, Y, Okamoto, T, Haraguchi, M, Fukui, M, Nakagaki, M. Characteristics of gap plasmon waveguide with stub structures. Opt Express 2008;16:16314–25. https://doi.org/10.1364/oe.16.016314.Suche in Google Scholar PubMed
194. Editorial. Commercializing plasmonics. Nat Photonics 2015;9:477.10.1038/nphoton.2015.149Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Amplifiers
- Performance analysis of long band passive optical network using amplifier spontaneous noise and fiber Bragg gratings
- Raman pumps power distribution optimization for maximum overall gain and flatness of a hybrid SOA/EDFA/Raman optical amplifier
- Devices
- A proposal for all optical digital multiplexer using photonic crystal-based nonlinear ring resonators
- A tunable optical frequency comb source using cascaded frequency modulator and Mach–Zehnder modulators
- A proposal for gray to BCD converter using nonlinear ring resonators
- An investigation and analysis of plasmonic modulators: a review
- Fibers
- High data-rate two-three inputs all-optical AND gate based on FWM in highly nonlinear fiber
- Fiber nonlinear impairments compensation based on nonlinear step size and modified adaptive digital back propagation
- Integrated Optics
- Sensing performance of Au–Ag bimetal coated planar waveguide having polyaniline polymer film for biosensing applications
- Networks
- Performance analysis of wavelength division multiplexing MDM-PON system using different advanced modulations
- Analysis of optical networks in presence of nodes noise and crosstalk
- RNN based EPON dynamic bandwidth allocation algorithm for complex network
- Efficient design of a Raman amplified wavelength division multiplexed communication network at 1330 nm
- A novel strategy to enhance the quality of service (QoS) for data center traffic in elastic optical networks
- Receivers
- Underwater wireless optical communication utilizing multiple input–multiple output (MIMO)-LED system for RF transmission with solar panel receiver
- A systematic literature review on channel estimation in MIMO-OFDM system: performance analysis and future direction
- Systems
- Effect of optical pulse shaping and adaptive equalization on the performance of 100G DP-QPSK WDM system
- Pulse width shortening combinations (PWSC) for ultra-dense WDM systems and calculation of PWSE
- Power allocation scheme in MIMO-OFDM UWOC system with varying receiver spacing channel gain analysis
- Free-space optical link optimization in visible light communication system
- Determining code parameters to achieve the maximum bandwidth efficiency in fiber-optic CDMA systems
- Optical wireless communication under the effect of low electric field
- Multibeam FSO-based 5G communication system using M-ary DPSK encoder
- Review of fibreless optical communication technology: history, evolution, and emerging trends
- Theory
- Throughput analysis of dual hop hybrid RF-VLC system with wireless energy harvesting
- Average spectral efficiency of multi-pulse position with adaptive transmissions and aperture averaging over atmospheric turbulence
- Dynamic changes of VN resource requests research on dynamic VN mapping algorithms for increasing demand for resources
Artikel in diesem Heft
- Frontmatter
- Amplifiers
- Performance analysis of long band passive optical network using amplifier spontaneous noise and fiber Bragg gratings
- Raman pumps power distribution optimization for maximum overall gain and flatness of a hybrid SOA/EDFA/Raman optical amplifier
- Devices
- A proposal for all optical digital multiplexer using photonic crystal-based nonlinear ring resonators
- A tunable optical frequency comb source using cascaded frequency modulator and Mach–Zehnder modulators
- A proposal for gray to BCD converter using nonlinear ring resonators
- An investigation and analysis of plasmonic modulators: a review
- Fibers
- High data-rate two-three inputs all-optical AND gate based on FWM in highly nonlinear fiber
- Fiber nonlinear impairments compensation based on nonlinear step size and modified adaptive digital back propagation
- Integrated Optics
- Sensing performance of Au–Ag bimetal coated planar waveguide having polyaniline polymer film for biosensing applications
- Networks
- Performance analysis of wavelength division multiplexing MDM-PON system using different advanced modulations
- Analysis of optical networks in presence of nodes noise and crosstalk
- RNN based EPON dynamic bandwidth allocation algorithm for complex network
- Efficient design of a Raman amplified wavelength division multiplexed communication network at 1330 nm
- A novel strategy to enhance the quality of service (QoS) for data center traffic in elastic optical networks
- Receivers
- Underwater wireless optical communication utilizing multiple input–multiple output (MIMO)-LED system for RF transmission with solar panel receiver
- A systematic literature review on channel estimation in MIMO-OFDM system: performance analysis and future direction
- Systems
- Effect of optical pulse shaping and adaptive equalization on the performance of 100G DP-QPSK WDM system
- Pulse width shortening combinations (PWSC) for ultra-dense WDM systems and calculation of PWSE
- Power allocation scheme in MIMO-OFDM UWOC system with varying receiver spacing channel gain analysis
- Free-space optical link optimization in visible light communication system
- Determining code parameters to achieve the maximum bandwidth efficiency in fiber-optic CDMA systems
- Optical wireless communication under the effect of low electric field
- Multibeam FSO-based 5G communication system using M-ary DPSK encoder
- Review of fibreless optical communication technology: history, evolution, and emerging trends
- Theory
- Throughput analysis of dual hop hybrid RF-VLC system with wireless energy harvesting
- Average spectral efficiency of multi-pulse position with adaptive transmissions and aperture averaging over atmospheric turbulence
- Dynamic changes of VN resource requests research on dynamic VN mapping algorithms for increasing demand for resources