Startseite Experimental Demonstration of MASH Based Sigma Delta Radio over Fiber System for 5G C-RAN Downlink
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental Demonstration of MASH Based Sigma Delta Radio over Fiber System for 5G C-RAN Downlink

  • Muhammad Usman Hadi ORCID logo EMAIL logo , Muhammad Umair Hadi , Nelofar Aslam , Rafaqat Ali , Kiran Khurshid , Pier Andrea Traverso und Giovanni Tartarini
Veröffentlicht/Copyright: 16. Februar 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Sigma Delta Radio over Fiber (S-DRoF) systems are looked upon as an enabling technology due to their advantages that comes due to combination of analog and digital radio over fiber (RoF) systems. In this paper, we have proposed and experimentally demonstrated a Multi-stAge-noise-SHaping (MASH) based Sigma Delta Modulated RoF system targeting 5G C-RAN (cloud/centralized radio access network) fronthaul applications. The evaluation has been done for LTE 20 MHz signal having 256 quadrature amplitude modulation with a carrier frequency of 3.5 GHz up to 5 Km of Standard Single Mode Fiber (SSMF). Furthermore, a comprehensive analysis of the design is explained followed by the experimental setup. The performance is reported in terms of error vector magnitude (EVM) and adjacent channel leakage ratio. It is concluded that S-DRoF substantiates the desired range of the 5G C-RAN fronthaul networks.

Acknowledgements

M.U. Hadi would like to extend his gratitude to Dr Hyun Do Jung from Bells for fruitful discussion and collaboration.

References

1. Gupta A, Jha RK. A survey of 5G network: architecture and emerging technologies. IEEE Access. 2015;3:1206–32.10.1109/ACCESS.2015.2461602Suche in Google Scholar

2. China Mobile Research Institute, Beijing, China, C-RAN: the road towards green RAN. White Paper. 2013.Suche in Google Scholar

3. Ranaweera C, Wong E, Nirmalathas A, Jayasundara C, Lim C. 5G C-RAN with optical fronthaul: an analysis from a deployment perspective. J Lightw Technol. 2018;36:2059–68.10.1109/JLT.2017.2782822Suche in Google Scholar

4. Kurniawan T, Nirmalathas A, Lim C, Novak D, Waterhouse R. Performance analysis of optimized millimeter-wave fiber radio links. IEEE Tran Microwave Theory Tech. 2006;54:921–8.10.1109/TMTT.2005.863047Suche in Google Scholar

5. Gagnaire M. Analog and digitized radio-over-fiber. In: Tornatore M, Chang GK, Ellinas G, editors. Fiber-wireless convergence in next-generation communication networks. Optical Networks. Cham: Springer, 2017.10.1007/978-3-319-42822-2_4Suche in Google Scholar

6. Fuochi F, Hadi MU, Nanni J, Traverso PA, Tartarini G. Digital predistortion technique for the compensation of nonlinear effects in radio over fiber links. 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Bologna, 2016:1–6. DOI:10.1109/RTSI.2016.7740562.Suche in Google Scholar

7. Hadi MU, Nanni J, Traverso PA, Tartarini G, Venard O, Baudoin G, et al. Experimental evaluation of digital predistortion for VCSEL-SSMF-based radio-over-Fiber link. 2018 IEEE Int Top Meeting Microwave Photonics (MWP). 2018;1:1–4.10.1109/MWP.2018.8552895Suche in Google Scholar

8. Hadi MU, Traverso PA, Tartarini G, Venard O, Baudoin G, Polleux JL. Digital predistortion for linearity improvement of VCSEL-SSMF-based radio-over-fiber links. IEEE Microwave Wireless Compon Lett. 2019 Jan (early access). DOI:10.1109/LMWC.2018.2889004.Suche in Google Scholar

9. Hekkala A, Hiivala M, Lasanen M, Perttu J, Vieira LC, Gomes NJ, et al. Predistortion of radio over fiber links: algorithms, implementation, and measurements. IEEE Trans Circuits Syst I Regul Pap. 2012;59:664–72.10.1109/TCSI.2011.2167267Suche in Google Scholar

10. Gamage PA, Nirmalathas A, Lim C, Novak D, Waterhouse R. Design and analysis of digitized RF-over-fiber links. IEEE J Lightw Technol. 2009;27:2052–61.10.1109/JLT.2008.2006689Suche in Google Scholar

11. Yang Y, Lim C, Nirmalathas A. Experimental demonstration of multi-service hybrid fiber-radio system using digitized RF-over-fiber technique. IEEE J Lightw Technol. 2011;29:2131–7.10.1109/JLT.2011.2152365Suche in Google Scholar

12. Haddad A, Gagnaire M. Radio-over-fiber (RoF) for mobile backhauling: A technical and economic comparison between analog and digitized RoF. In Proceedings of International Conference on Optical Network Design and Modeling, 2014:132–7.Suche in Google Scholar

13. Breyne L, Torfs G, Yin X, Demeester P, Bauwelinck J. Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber. IEEE Photonics Technol. 2017;29:1808–11.10.1109/LPT.2017.2752284Suche in Google Scholar

14. Pessoa LM, Tavares JS, Coelho D, Salgado HM. Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation. Opt Express. 2014;22:17508–23.10.1364/OE.22.017508Suche in Google Scholar PubMed

15. Jang S, Jo G, Jung J, Park B, Hong S. A digitized if-over fiber transmission based on low-pass delta-sigma modulation. IEEE Photonics Technol Lett. 2014;26:2484–7.10.1109/LPT.2014.2361753Suche in Google Scholar

16. Hadi M, Aslam N, Jung H. Performance appraisal of sigma delta modulated radio over fiber system. J Opt Commun. 2019. DOI:10.1515/joc-2018-0227.Suche in Google Scholar

17. Markert D, Yu X, Heimpel H0, Fischer G. An all-digital, singlebit rf transmitter for massive mimo. IEEE Trans Circuits Syst I Regul Pap. 2017 March;64:696–704.10.1109/TCSI.2016.2615161Suche in Google Scholar

18. Schreier R, Temes GC. Understanding delta-sigma data converters, 1st ed. Hoboken, NJ, USA: Wiley, 2004.10.1109/9780470546772Suche in Google Scholar

19. Fouto D, Paulino N. Design of low power and low area passive sigma delta modulators for audio applications. springer, ISSN 2191–8112 ISSN 2191–8120 (electronic) SpringerBriefs in Electrical and Computer Engineering. ISBN 978-3-319-57032-7 ISBN 978-3-319-57033-4 (eBook). DOI:10.1007/978–3–319–57033–4.Suche in Google Scholar

20. Forestier S, Bouvsse P, Quere R, Mallet A, Nebus JM, Lapierre L. Joint optimization of the power-aided efficiency and error vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method. IEEE Trans Microwave Theory Tech. 2004;52:1132–40.10.1109/TMTT.2004.825745Suche in Google Scholar

21. 3GPP TS36.101 V12.6.0, Evolved Universal Terrestrial Radio Access (E-UTRA) User Equipment (UE) Radio Transmission and Reception (Release 12), December 2014.Suche in Google Scholar

22. Seimetz M. System simulation aspects. In: High order modulation for optical fiber transmission. Verlag Berlin Heidelberg, Germany Springer, 2009:127–31.10.1007/978-3-540-93771-5_5Suche in Google Scholar

23. Cordeiro RF, Oliveira ASR, Vieira J, Silva TOE. Wideband all-digital transmitter based on multicore DSM. IEEE MTT-S International Microwave Symposium (IMS) 2016.10.1109/MWSYM.2016.7540117Suche in Google Scholar

24. Dinis DC, Cordeiro RF, Oliveira ASR, Vieira J, Silva TO. Improving the performance of all-digital transmitter based on parallel delta-sigma modulators through propagation of state registers. IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS) 2017:1133–7.10.1109/MWSCAS.2017.8053128Suche in Google Scholar

25. Tanio M, Hori S, Tawa N, Yamase T, Kunihiro K, An FPGA-based all-digital transmitter with 28-GHz time-interleaved delta-sigma modulation. IEEE MTT-S International Microwave Symposium (IMS) 2016.10.1109/MWSYM.2016.7540142Suche in Google Scholar

26. Tanio M, Hori S, Tawa N, Kunihiro K, An FPGA-based all-digital transmitter with 9.6-GHz 2nd order time-interleaved delta-sigma modulation for 500-MHz bandwidth. IEEE MTT-S International Microwave Symposium (IMS) 2017:149–52.10.1109/MWSYM.2017.8058904Suche in Google Scholar

Received: 2019-01-11
Accepted: 2019-01-30
Published Online: 2019-02-16
Published in Print: 2022-07-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Amplifiers
  3. Analysis of Four Wave Mixing In Ultra Dense WDM-Hybrid Optical Amplifier Systems
  4. Detectors
  5. BER of Underwater Wireless Optical Communication Systems with SIMO Detection over Strong Oceanic Turbulence
  6. Devices
  7. All-Optical XOR, XNOR, NAND and OR Logic Gates Based on Photonic Crystal 3-DB Coupler for BPSK Signals
  8. Transmittivity/Reflectivity, Bandwidth, and Ripple Factor Level Measurement for Different Refractive Index Fiber Grating Shape Profiles
  9. Bit Error Rate Analysis of Hybrid Buffer-Based Switch for Optical Data Centers
  10. Modulators
  11. High-Quality Optical Frequency Comb Generation-Based on Polarization Modulator with RF Frequency Multiplication Circuit and Intensity Modulator
  12. Networks
  13. Performance Enhancement in Colorless WDM–PON Using SSB-SC
  14. Lightbeam Configuration Method and Interference Elimination Resource Scheduling for Indoor Multibeam VLC Networks
  15. An Integrated High-Speed Full Duplex Coherent OFDM-PON and Visible-Light Communication System
  16. Resource Efficient Online Routing Enabled Translucent Space Division Multiplexing Based Elastic Optical Networks
  17. Comparative Analysis of High Speed 20/20 Gbps OTDM-PON, WDM-PON and TWDM-PON for Long-Reach NG-PON2
  18. Systems
  19. Directional Beam Based LED Deployment for a Short Range Indoor LED Light Communication System
  20. Secure Optical QAM Transmission Using Chaos Message Masking
  21. Performance Analysis of Duobinary and AMI Techniques Using LG Modes in Hybrid MDM-WDM-FSO Transmission System
  22. Performance Analysis of Single Side Band Orthogonal Frequency Division Multiplexing in Radio over Fiber System with Direct and External Modulation Schemes
  23. Performance Analysis of FSK-PPM Technique in Visible-Light Communication Systems
  24. Experimental Demonstration of MASH Based Sigma Delta Radio over Fiber System for 5G C-RAN Downlink
Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2019-0011/html?lang=de
Button zum nach oben scrollen