Startseite A medius error analysis for the conforming discontinuous Galerkin finite element methods
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A medius error analysis for the conforming discontinuous Galerkin finite element methods

  • Yuping Zeng und Shangyou Zhang ORCID logo EMAIL logo
Veröffentlicht/Copyright: 24. Februar 2025

Abstract

In this paper, we derive an improved error estimate of a conforming discontinuous Galerkin (CDG) method for both second and fourth order elliptic problems, assuming only minimal regularity on the exact solutions. The result we established is called a medius error estimate since it relies on both a priori and a posteriori analysis. Compared with the standard interior penalty discontinuous Galerkin (IPDG) method, when choosing the standard DG norm, an additional term ‖∇u − ∇ w v h 0 is incorporated in the CDG formulation for second order elliptic equation, while for the case of fourth order equation, this term becomes Δ u Δ w v h 0 . These terms disappear if we directly analyze the nonstandard error formulations ‖∇u − ∇ w u h 0 and Δ u Δ w u h 0 . Extensive numerical results are also carried out to validate our theoretical findings.

MSC 2010 Classification: 65N15; 65N30

Corresponding author: Shangyou Zhang, Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA, E-mail: 

Acknowledgments

The authors thank three anonymous referees for their valuable comments and suggestions which helped to improve the quality of this article.

  1. Research Ethics: The work is original and is not published elsewhere in any form or language.

  2. Informed consent: This article does not contain any studies involving animals. This article does not contain any studies involving human participants.

  3. Author contributions: All authors made equal contribution in this work.

  4. Use of Large Language Models, AI and Machine Learning Tools: There is no use of Large Language Models, AI and Machine Learning Tools.

  5. Conflict of interest: There is no potential conflict of interest.

  6. Research funding: This work is supported by Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515011032) and National Natural Science Foundation of China (No. 11526097).

  7. Data availability: This research does not use any external or author-collected data.

References

[1] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, New York, Springer-Verlag, 2008.10.1007/978-0-387-75934-0Suche in Google Scholar

[2] Z. Shi and M. Wang, Finite Element Methods, Beijing, Science Press, 2010.Suche in Google Scholar

[3] S. C. Brenner and M. A. Neilan, “A C0 interior penalty method for a fourth order elliptic singular perturbation problem,” SIAM J. Numer. Anal., vol. 49, no. 2, pp. 869–892, 2011. https://doi.org/10.1137/100786988.Suche in Google Scholar

[4] C. Carstensen, A. K. Dond, N. Nataraj, and A. K. Pani, “Three first-order finite volume element methods for Stokes equations under minimal regularity assumptions,” SIAM J. Numer. Anal., vol. 56, no. 4, pp. 2648–2671, 2018. https://doi.org/10.1137/17m1134135.Suche in Google Scholar

[5] C. Carstensen and N. Nataraj, “A priori and a posteriori error analysis of the Crouzeix–Raviart and Morley FEM with original and modified right-hand sides,” Comput. Methods Appl. Math., vol. 21, no. 2, pp. 289–315, 2021. https://doi.org/10.1515/cmam-2021-0029.Suche in Google Scholar

[6] C. Carstensen and M. Schedensack, “Medius analysis and comparison results for first-order finite element methods in linear elasticity,” IMA J. Numer. Anal., vol. 35, no. 4, pp. 1591–1621, 2015. https://doi.org/10.1093/imanum/dru048.Suche in Google Scholar

[7] A. Ern and J. L. Guermond, “Quasi-optimal nonconforming approximation of elliptic PDEs with contrasted coefficients and H1+r, r > 0, regularity,” Found Comput. Math., vol. 22, pp. 1273–1308, 2022. https://doi.org/10.1007/s10208-021-09527-7.Suche in Google Scholar

[8] T. Gudi, “A new error analysis for discontinuous finite element methods for linear elliptic problems,” Math. Comput., vol. 79, no. 272, pp. 2169–2189, 2010. https://doi.org/10.1090/s0025-5718-10-02360-4.Suche in Google Scholar

[9] J. Hu, R. Ma, and Z. Shi, “A new a priori error estimate of nonconforming finite element methods,” Sci. China Math., vol. 57, pp. 887–902, 2014. https://doi.org/10.1007/s11425-014-4793-3.Suche in Google Scholar

[10] J. Huang and Y. Yu, “A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations,” J. Comput. Appl. Math., vol. 386, 2021, Art. no. 113229. https://doi.org/10.1016/j.cam.2020.113229.Suche in Google Scholar

[11] M. Li, X. Guan, and S. Mao, “New error estimates of the Morley element for the plate bending problems,” J. Comput. Appl. Math., vol. 263, pp. 405–416, 2014. https://doi.org/10.1016/j.cam.2013.12.024.Suche in Google Scholar

[12] W. Wang, X. Huang, K. Tang, and R. Zhou, “Morley–Wang–Xu element methods with penalty for a fourth order elliptic singular perturbation problem,” Adv. Comput. Math., vol. 44, no. 4, pp. 1041–1061, 2018. https://doi.org/10.1007/s10444-017-9572-6.Suche in Google Scholar

[13] R. Stenberg and J. Videman, “On the error analysis of stabilized finite element methods for the Stokes problem,” SIAM J. Numer. Anal., vol. 53, no. 6, pp. 2626–2633, 2015. https://doi.org/10.1137/140999396.Suche in Google Scholar

[14] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems,” SIAM J. Numer. Anal., vol. 39, no. 5, pp. 1749–1779, 2002. https://doi.org/10.1137/s0036142901384162.Suche in Google Scholar

[15] B. Cockburn and C. Shu, “The local discontinuous Galerkin method for time-dependent convection–diffusion systems,” SIAM J. Numer. Anal., vol. 35, no. 6, pp. 2440–2463, 1998. https://doi.org/10.1137/s0036142997316712.Suche in Google Scholar

[16] X. Ye and S. Zhang, “A conforming discontinuous Galerkin finite element method,” Int. J. Numer. Anal. Model., vol. 17, no. 1, pp. 110–117, 2020.Suche in Google Scholar

[17] J. Wang and X. Ye, “A weak Galerkin finite element method for second-order elliptic problems,” J. Comput. Appl. Math., vol. 241, pp. 103–115, 2013. https://doi.org/10.1016/j.cam.2012.10.003.Suche in Google Scholar

[18] E. Süli and I. Mozolevski, “hp-version interior penalty DGFEMs for the biharmonic equation,” Comput. Methods Appl. Mech. Eng., vol. 196, nos. 13–16, pp. 1851–1863, 2007. https://doi.org/10.1016/j.cma.2006.06.014.Suche in Google Scholar

[19] X. Ye and S. Zhang, “A conforming DG method for the biharmonic equation on polytopal meshes,” Int. J. Numer. Anal. Model., vol. 20, no. 6, pp. 855–869, 2023.10.4208/ijnam2023-1037Suche in Google Scholar

[20] X. Ye and S. Zhang, “A conforming discontinuous Galerkin finite element method: Part II,” Int. J. Numer. Anal. Model., vol. 17, no. 2, pp. 281–296, 2020.Suche in Google Scholar

[21] X. Ye and S. Zhang, “A conforming discontinuous Galerkin finite element method: Part III,” Int. J. Numer. Anal. Model., vol. 17, no. 6, pp. 794–805, 2020.Suche in Google Scholar

[22] X. Ye and S. Zhang, “Order two superconvergence of the CDG finite elements on triangular and tetrahedral meshes,” CSIAM Trans. Appl. Math., vol. 4, no. 2, pp. 256–274, 2023.10.4208/csiam-am.SO-2021-0051Suche in Google Scholar

[23] X. Ye and S. Zhang, “A weak divergence CDG method for the biharmonic equation on triangular and tetrahedral meshes,” Appl. Numer. Math., vol. 178, pp. 155–165, 2022. https://doi.org/10.1016/j.apnum.2022.03.017.Suche in Google Scholar

[24] X. Ye and S. Zhang, “A C0-conforming DG finite element method for biharmonic equations on triangle/tetrahedron,” J. Numer. Math., vol. 30, no. 3, pp. 163–172, 2022. https://doi.org/10.1515/jnma-2021-0012.Suche in Google Scholar

[25] X. Ye and S. Zhang, “Four-order superconvergent CDG finite elements for the biharmonic equation on triangular meshes,” J. Comput. Appl. Math., vol. 440, 2024, Art. no. 115516. https://doi.org/10.1016/j.cam.2023.115516.Suche in Google Scholar

[26] Y. Wang, F. Gao, and J. Cui, “A conforming discontinuous Galerkin finite element method for elliptic interface problems,” J. Comput. Appl. Math., vol. 412, 2022, Art. no. 114304. https://doi.org/10.1016/j.cam.2022.114304.Suche in Google Scholar

[27] Y. Wang, F. Gao, and J. Cui, “A conforming discontinuous Galerkin finite element method for linear elasticity interface problems,” J. Sci. Comput., vol. 92, 2022, Art. no. 9. https://doi.org/10.1007/s10915-022-01857-0.Suche in Google Scholar

[28] R. Verfürth, A Review of a Posteriori Estimation and Adaptive Mesh-Refinement Techniques, New York, Wiley-Teubner, 1996.Suche in Google Scholar

[29] L. Chen, J. Wang, and X. Ye, “A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems,” J. Sci. Comput., vol. 59, no. 2, pp. 496–511, 2014. https://doi.org/10.1007/s10915-013-9771-3.Suche in Google Scholar

[30] O. A. Karakashian and F. Pascal, “A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems,” SIAM J. Numer. Anal., vol. 41, no. 6, pp. 2374–2399, 2003. https://doi.org/10.1137/s0036142902405217.Suche in Google Scholar

[31] S. C. Brenner, T. Gudi, and L. Sung, “An a posteriori error estimator for a quadratic C0-interior penalty method for the biharmonic problem,” IMA J. Numer. Anal., vol. 30, no. 3, pp. 777–798, 2010. https://doi.org/10.1093/imanum/drn057.Suche in Google Scholar

[32] Z. Dong, L. Mascotto, and O. J. Sutton, “Residual-based a posteriori error estimates for hp-discontinuous Galerkin discretizations of the biharmonic problem,” SIAM J. Numer. Anal., vol. 59, no. 3, pp. 127–1298, 2021.10.1137/20M1364114Suche in Google Scholar

[33] E. H. Georgoulis, P. Houston, and J. Virtanen, “An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems,” IMA J. Numer. Anal., vol. 31, no. 1, pp. 281–298, 2011. https://doi.org/10.1093/imanum/drp023.Suche in Google Scholar

[34] J. Argyris, I. Fried, and D. Scharpf, “The TUBA family of plate elements for the matrix displacement method,” Aeronaut. Sci., vol. 72, no. 692, pp. 701–709, 1968. https://doi.org/10.1017/s000192400008489x.Suche in Google Scholar

[35] S. Zhang, “A family of 3D continuously differentiable finite elements on tetrahedral grids,” Appl. Numer. Math., vol. 59, no. 1, pp. 219–233, 2009. https://doi.org/10.1016/j.apnum.2008.02.002.Suche in Google Scholar

[36] J. Hu, T. Lin, and Q. Wu, “A construction of Cr conforming finite element spaces in any dimension,” Found. Comput. Math., vol. 24, pp. 1941–1977, 2023. https://doi.org/10.1007/s10208-023-09627-6.Suche in Google Scholar

Received: 2024-01-10
Accepted: 2024-11-04
Published Online: 2025-02-24
Published in Print: 2025-09-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2024-0005/html?lang=de
Button zum nach oben scrollen