Startseite Long time behavior of the field–road diffusion model: an entropy method and a finite volume scheme
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Long time behavior of the field–road diffusion model: an entropy method and a finite volume scheme

  • Matthieu Alfaro und Claire Chainais-Hillairet ORCID logo EMAIL logo
Veröffentlicht/Copyright: 26. Februar 2025

Abstract

We consider the so-called field–road diffusion model in a bounded domain, consisting of two parabolic PDEs posed on sets of different dimensions (a field and a road in a population dynamics context) and coupled through exchange terms on the road, which makes its analysis quite involved. We propose a two-point flux approximation (TPFA) finite volume scheme. In both the continuous and the discrete settings, we prove the dissipation of a quadratic entropy, with some entropy dissipation-entropy relation, leading to the exponential decay in time of the solution towards the stationary state selected by the total mass of the initial data. To deal with the problem of different dimensions in the proof of the entropy dissipation-entropy relation, we artificially “thicken” the road and adapt the proof of the Poincaré–Wirtinger inequality. Numerical simulations confirm and complete the analysis, and raise new issues.

MSC 2010 Classification: 35K40; 35B40; 65M08; 65M12

Corresponding author: Claire Chainais-Hillairet, Univ. Lille, CNRS, Inria, UMR 8524 – Laboratoire Paul Painlevé, F-59000 Lille, France, E-mail: 

Funding source: Labex CEMPI

Award Identifier / Grant number: ANR-11-LABX-0007-01

  1. Research Ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: C. Chainais-Hillairet acknowledges support from the Labex CEMPI (ANR-11-LABX-0007-01). M. Alfaro is supported by the ANR project DEEV (ANR-20-CE40-0011-01).

  7. Data availability: Not applicable.

References

[1] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice. Oxford Series in Ecology and Evolution, Oxford, Oxford University Press, 1997.10.1093/oso/9780198548522.001.0001Suche in Google Scholar

[2] J. D. Murray, Mathematical Biology. Vol. 1: An Introduction, ser. Interdisciplinary Applied Mathematics, vol. 17, 3rd ed. New York, Springer, 2002.Suche in Google Scholar

[3] J. D. Murray, Mathematical Biology. Vol. 2: Spatial Models and Biomedical Applications, ser. Interdisciplinary Applied Mathematics, vol. 18, 3rd ed. New York, Springer, 2003.10.1007/b98869Suche in Google Scholar

[4] C. Robinet, et al.., “Human-mediated long-distance jumps of the pine processionary moth in Europe,” Biol. Invasions, vol. 14, no. 8, pp. 1557–1569, 2012, https://doi.org/10.1007/s10530-011-9979-9.Suche in Google Scholar

[5] H. W. McKenzie, E. H. Merrill, R. J. Spiteri, and M. A. Lewis, “How linear features alter predator movement and the functional response,” Interface Focus, vol. 2, no. 2, pp. 205–216, 2012, https://doi.org/10.1098/rsfs.2011.0086.Suche in Google Scholar PubMed PubMed Central

[6] B. V. Schmid, et al.., “Climate-driven introduction of the black death and successive plague reintroductions into Europe,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 10, pp. 3020–3025, 2015, https://doi.org/10.1073/pnas.1412887112.Suche in Google Scholar PubMed PubMed Central

[7] M. Gatto, et al.., “Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures,” Proc. Natl. Acad. Sci. U. S. A., vol. 117, no. 19, pp. 10484–10491, 2020, https://doi.org/10.1073/pnas.2004978117.Suche in Google Scholar PubMed PubMed Central

[8] H. Berestycki, J.-M. Roquejoffre, and L. Rossi, “The influence of a line with fast diffusion on Fisher-KPP propagation,” J. Math. Biol., vol. 66, no. 4, pp. 743–766, 2013, https://doi.org/10.1007/s00285-012-0604-z.Suche in Google Scholar PubMed

[9] H. Berestycki, J.-M. Roquejoffre, and L. Rossi, “Fisher–KPP propagation in the presence of a line: further effects,” Nonlinearity, vol. 26, no. 9, pp. 2623–2640, 2013, https://doi.org/10.1088/0951-7715/26/9/2623.Suche in Google Scholar

[10] H. Berestycki, J.-M. Roquejoffre, and L. Rossi, “The shape of expansion induced by a line with fast diffusion in Fisher-KPP equations,” Commun. Math. Phys., vol. 343, no. 1, pp. 207–232, 2016, https://doi.org/10.1007/s00220-015-2517-3.Suche in Google Scholar

[11] H. Berestycki, J.-M. Roquejoffre, and L. Rossi, “Travelling waves, spreading and extinction for Fisher–KPP propagation driven by a line with fast diffusion,” Nonlinear Anal., vol. 137, no. 1, pp. 171–189, 2016. https://doi.org/10.1016/j.na.2016.01.023.Suche in Google Scholar

[12] H. Berestycki, A.-C. Coulon, J.-M. Roquejoffre, and L. Rossi, “The effect of a line with nonlocal diffusion on Fisher-KPP propagation,” Math. Models Methods Appl. Sci., vol. 25, no. 13, pp. 2519–2562, 2015. https://doi.org/10.1142/S0218202515400175.Suche in Google Scholar

[13] H. Berestycki, A.-C. Coulon, J.-M. Roquejoffre, and L. Rossi, “Speed-up of reaction–diffusion fronts by a line of fast diffusion,” in Séminaire Laurent Schwartz — EDP et applications, 2013, pp. 1–25.10.5802/slsedp.62Suche in Google Scholar

[14] T. Giletti, L. Monsaingeon, and M. Zhou, “A KPP road–field system with spatially periodic exchange terms,” Nonlinear Anal., vol. 128, pp. 273–302, 2015, https://doi.org/10.1016/j.na.2015.07.021.Suche in Google Scholar

[15] A. Pauthier, “The influence of nonlocal exchange terms on Fisher-KPP propagation driven by a line of fast diffusion,” Commun. Math. Sci., vol. 14, no. 2, pp. 535–570, 2016. https://doi.org/10.4310/CMS.2016.v14.n2.a10.Suche in Google Scholar

[16] A. Pauthier, “Uniform dynamics for Fisher-KPP propagation driven by a line of fast diffusion under a singular limit,” Nonlinearity, vol. 28, no. 11, pp. 3891–3920, 2015, https://doi.org/10.1088/0951-7715/28/11/3891.Suche in Google Scholar

[17] A. Pauthier, “Road–field reaction–diffusion system: a new threshold for long range exchanges,” arXiv:1504.05437, 2015.Suche in Google Scholar

[18] A. Tellini, “Propagation speed in a strip bounded by a line with different diffusion,” J. Differ. Equ., vol. 260, no. 7, pp. 5956–5986, 2016, https://doi.org/10.1016/j.jde.2015.12.028.Suche in Google Scholar

[19] L. Rossi, A. Tellini, and E. Valdinoci, “The effect on Fisher-KPP propagation in a cylinder with fast diffusion on the boundary,” SIAM J. Math. Anal., vol. 49, no. 6, pp. 4595–4624, 2017, https://doi.org/10.1137/17m1125388.Suche in Google Scholar

[20] R. Ducasse, “Influence of the geometry on a field–road model: the case of a conical field,” J. Lond. Math. Soc., vol. 97, no. 3, pp. 441–469, 2018, https://doi.org/10.1112/jlms.12114.Suche in Google Scholar

[21] H. Berestycki, R. Ducasse, and L. Rossi, “Generalized principal eigenvalues for heterogeneous road–field systems,” Commun. Contemp. Math, vol. 22, no. 1, p. 1950013, 2020. https://doi.org/10.1142/S0219199719500135.Suche in Google Scholar

[22] H. Berestycki, R. Ducasse, and L. Rossi, “Influence of a road on a population in an ecological niche facing climate change,” J. Math. Biol., vol. 81, nos. 4–5, pp. 1059–1097, 2020. https://doi.org/10.1007/s00285-020-01537-3.Suche in Google Scholar PubMed

[23] M. Zhang, “Spreading speeds and pulsating fronts for a field–road model in a spatially periodic habitat,” J. Differ. Equ., vol. 304, pp. 191–228, 2021, https://doi.org/10.1016/j.jde.2021.09.038.Suche in Google Scholar

[24] B. Bogosel, T. Giletti, and A. Tellini, “Propagation for KPP bulk-surface systems in a general cylindrical domain,” Nonlinear Anal., vol. 213, p. 112528, 2021, https://doi.org/10.1016/j.na.2021.112528.Suche in Google Scholar

[25] E. Affili, “A Fisher-KPP model with a fast diffusion line in periodic media,” arXiv:2009.14760, 2020.Suche in Google Scholar

[26] M. Alfaro, R. Ducasse, and S. Tréton, “The field–road diffusion model: fundamental solution and asymptotic behavior,” J. Differ. Equ., vol. 367, pp. 332–365, 2023, https://doi.org/10.1016/j.jde.2023.05.002.Suche in Google Scholar

[27] K. Fellner, E. Latos, and B. Q. Tang, “Well-posedness and exponential equilibration of a volume-surface reaction–diffusion system with nonlinear boundary coupling,” Ann. Inst. H. Poincaré C Anal. Non Linéaire, vol. 35, no. 3, pp. 643–673, 2018. https://doi.org/10.1016/j.anihpc.2017.07.002.Suche in Google Scholar

[28] H. Egger, K. Fellner, J.-F. Pietschmann, and B. Q. Tang, “Analysis and numerical solution of coupled volume-surface reaction–diffusion systems with application to cell biology,” Appl. Math. Comput., vol. 336, pp. 351–367, 2018, https://doi.org/10.1016/j.amc.2018.04.031.Suche in Google Scholar

[29] R. Eymard, T. Gallouët, and R. Herbin, “Finite volume methods,” in Handbook of Numerical Analysis, ser. Handb. Numer. Anal., vol. VII, North-Holland/Elsevier, Amsterdam, 2000, pp. 713–1020.10.1016/S1570-8659(00)07005-8Suche in Google Scholar

[30] C. Chainais-Hillairet, A. Jüngel, and S. Schuchnigg, “Entropy-dissipative discretization of nonlinear diffusion equations and discrete beckner inequalities,” ESAIM Math. Model. Numer. Anal., vol. 50, no. 1, pp. 135–162, 2016, https://doi.org/10.1051/m2an/2015031.Suche in Google Scholar

[31] C. Chainais-Hillairet and M. Herda, “Large-time behaviour of a family of finite volume schemes for boundary-driven convection–diffusion equations,” IMA J. Numer. Anal., vol. 40, no. 4, pp. 2473–2504, 2020. https://doi.org/10.1093/imanum/drz037.Suche in Google Scholar

[32] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5: Evolution problems I. With the Collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon. Transl. from the French by A. Craig., 2nd ed. Berlin, Springer, 2000.Suche in Google Scholar

[33] M. Burger, I. Humpert, and J.-F. Pietschmann, “On Fokker–Planck equations with in- and outflow of mass,” Kinet. Relat. Models, vol. 13, no. 2, pp. 249–277, 2020. https://doi.org/10.3934/krm.2020009.Suche in Google Scholar

[34] A. Jüngel, Entropy Methods for Diffusive Partial Differential Equations, Bilbao, BCAM Springer Briefs. Springer, 2016.10.1007/978-3-319-34219-1Suche in Google Scholar

[35] K. Rektorys, Variational Methods in Mathematics, Science and Engineering, 2nd ed. Dordrecht–Boston, Mass., D. Reidel Publishing Co., 1980, translated from the Czech by Michael Basch.Suche in Google Scholar

[36] R. Duduchava, “On Poincaré, Friedrichs and Korns inequalities on domains and hypersurfaces,” arXiv preprint arXiv:1504.01677, 2015.Suche in Google Scholar

[37] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, ser. Lecture Notes of the Unione Matematica Italiana, vol. 3, Berlin; UMI, Bologna, Springer, 2007.Suche in Google Scholar

[38] K. Drury, J. Drake, D. Lodge, and G. Dwyer, “Immigration events dispersed in space and time: factors affecting invasion success,” Ecol. Model., vol. 206, nos. 1–2, pp. 63–78, 2007, https://doi.org/10.1016/j.ecolmodel.2007.03.017.Suche in Google Scholar

[39] J. Garnier, L. Roques, and F. Hamel, “Success rate of a biological invasion in terms of the spatial distribution of the founding population,” Bull. Math. Biol., vol. 74, no. 2, pp. 453–473, 2012. https://doi.org/10.1007/s11538-011-9694-9.Suche in Google Scholar PubMed

[40] I. Mazari, G. Nadin, and A. I. Toledo Marrero, “Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: two-scale expansions and symmetrisations,” Nonlinearity, vol. 34, no. 11, pp. 7510–7539, 2021. https://doi.org/10.1088/1361-6544/ac23b9.Suche in Google Scholar

[41] M. Alfaro, F. Hamel, and L. Roques, “Propagation or extinction in bistable equations: the non-monotone role of initial fragmentation,” Discrete Contin. Dyn. Syst. Ser. S., vol. 17, no. 4, pp. 1460–1484, 2024.10.3934/dcdss.2023165Suche in Google Scholar

Received: 2023-11-08
Accepted: 2024-10-22
Published Online: 2025-02-26
Published in Print: 2025-09-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2023-0137/html?lang=de
Button zum nach oben scrollen