Startseite Upper Bounds for the Conversion Efficiency of Diluted Blackbody Radiation Energy into Work
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Upper Bounds for the Conversion Efficiency of Diluted Blackbody Radiation Energy into Work

  • Viorel Badescu EMAIL logo
Veröffentlicht/Copyright: 19. April 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new formula has been proposed for the Landsberg–Tonge function χ(ε) entering the entropy density flux of the diluted blackbody radiation of dilution factor ε. Two models have been proposed for the conversion of diluted blackbody radiation energy into work. The Carnot and Petela–Landsberg–Press relationships do not provide accurate upper bounds for the real conversion efficiency and in some cases they wrongly estimate positive output work when the converter of radiation energy into work does not operate. Four upper bounds for the conversion efficiency have been derived. The most accurate upper bound efficiency requires the numerical solution of an algebraic equation for the optimum absorber temperature while the second best upper bound efficiency has the advantage that it is a simple analytical formula.

References

[1] V. Badescu, Lost available work and entropy generation: Heat versus radiation reservoirs, J. Non-Equilib. Thermodyn. 38 (2013), 313–333.10.1515/jnetdy-2013-0017Suche in Google Scholar

[2] M. Planck, The Theory of Heat Radiation, Barth, Leipzig, Germany, 1913. (English translation by M. Masius, P. Blakiston’s Son, Philadelphia, Pa., 1914; English translation by M. Masius, Dover, New York, 1959.)Suche in Google Scholar

[3] P. T. Landsberg and G. Tonge, Thermodynamics of the conversion of diluted radiation, J. Phys. A, Math. Nucl. Gen. 12 (1979), 551–562.10.1088/0305-4470/12/4/015Suche in Google Scholar

[4] V. Badescu, On the thermodynamics of the conversion of diluted radiation, J. Phys. D, Appl. Phys. 23 (1990), 289–292.10.1088/0022-3727/23/3/002Suche in Google Scholar

[5] V. Badescu, Maximum conversion efficiency for the utilization of multiply scattered solar radiation, J. Phys. D, Appl. Phys. 24 (1991), 1882–1885.10.1088/0022-3727/24/10/026Suche in Google Scholar

[6] M. Castans, A. Soler and F. Soriano, Theoretical maximal efficiency of diffuse radiation, Sol. Energy 38 (1987), 267–270.10.1016/0038-092X(87)90048-XSuche in Google Scholar

[7] V. Badescu, L’exergie de la radiation solaire directe et diffuse sur la surface de la Terre, Entropy 145 (1988), 41–45.Suche in Google Scholar

[8] W. Wu and Y. Liu, Radiation entropy flux and entropy production of the earth system, Rev. Geophys. 48 (2010) RG2003.10.1029/2008RG000275Suche in Google Scholar

[9] W. Wu and Y. Liu, A new one-dimensional radiative equilibrium model for investigating atmospheric radiation entropy flux, Phil. Trans. R. Soc. B 365 (2010), 1367–1376.10.1098/rstb.2009.0301Suche in Google Scholar

[10] S. E. Wright, D. S. Scott, J. B. Haddow and M. A. Rosen, On the entropy of radiative transfer in engineering thermodynamics, Int. J. Eng. Sci. 39 (2001), 1691–1706.10.1016/S0020-7225(01)00024-6Suche in Google Scholar

[11] S. E. Wright, Comparative analysis of the entropy of radiative heat transfer and heat conduction, Int. J. Thermodyn. 10 (2007),27–35.Suche in Google Scholar

[12] S. M. Jeter, Maximum conversion efficiency for the utilization of direct solar radiation, Sol. Energy 26 (1981), 231–236.10.1016/0038-092X(81)90207-3Suche in Google Scholar

[13] R. Petela, Exergy of heat radiation, J. Heat Transf. 86 (1964) 187–192.10.1115/1.3687092Suche in Google Scholar

[14] P. T. Landsberg and J. R. Mallinson, Thermodynamic constraints, effective temperatures and solar cells, in: Coll. Int. sur l’Electricite Solaire. CNES, Toulouse (1976), 27–35.Suche in Google Scholar

[15] W. H. Press, Theoretical maximum for energy from direct and diffuse sunlight, Nature 264 (1976) 734–735.10.1038/264734a0Suche in Google Scholar

[16] V. Badescu, Is Carnot efficiency the upper bound for work extraction from thermal reservoirs? Europhys. Lett. 106 (2014), 18006.10.1209/0295-5075/106/18006Suche in Google Scholar

[17] V. Badescu, How much work can be extracted from a radiation reservoir? Physica A 410 (2014) 110–119.10.1016/j.physa.2014.05.024Suche in Google Scholar

[18] V. Badescu, Maximum reversible work extraction from a blackbody radiation reservoir. A way to closing the old controversy, Europhys. Lett. 109 (2015), 40008.10.1209/0295-5075/109/40008Suche in Google Scholar

[19] V. Badescu, On the thermodynamics of the conversion of the diluted and un-diluted black-body radiation, Space Power 9 (1990), 317–322.Suche in Google Scholar

[20] V. Badescu, Accurate upper bound for the efficiency of converting solar energy into work, J. Phys. D, Appl. Phys. 31 (1998), 820–825.10.1088/0022-3727/31/7/011Suche in Google Scholar

[21] V. Badescu, Accurate upper bounds for the conversion efficiency of black-body radiation energy into work, Phys. Lett. A 244 (1998), 31–34.10.1016/S0375-9601(98)00288-6Suche in Google Scholar

[22] P. T. Landsberg and G. Tonge, Thermodynamic energy conversion efficiencies, J. Appl. Phys. 51 (1980), R1–R20.10.1063/1.328187Suche in Google Scholar

[23] V. Badescu, Thermodynamics of photovoltaics, Reference Module in Earth Syst. Environ. Sci., Elsevier, 2017; DOI: 10.1016/B978-0-12-409548-9.04806-5.Suche in Google Scholar

[24] G. L. Stephens and D. M. O’ Brien, Entropy and climate. I: ERBE observations of the entropy production, Q. J. R. Meteorol. Soc. 119 (1993), 121–152.10.1002/qj.49711950906Suche in Google Scholar

[25] K. Fong, T. Jefferson, T. Suyehiro and L. Walton, Guide to the SLATEC Common Mathematical Library. Lawrence Livermore National Laboratory, April 10, 1990.Suche in Google Scholar

[26] TableCurve 2D v5.01 for Windows, 2002, SYSTAT Software Inc., 1735 Technology Drive, Suite 430. San Jose.Suche in Google Scholar

[27] S. Kabelac and R. Conrad, Entropy generation during the interaction of thermal radiation with a surface, Entropy 14 (2012), 717–735.10.3390/e14040717Suche in Google Scholar

[28] V. Badescu, Spectrally and angularly selective photothermal and photovoltaic converters under one-sun illumination, J. Phys. D, Appl. Phys. 38 (2005), 2166–2172.10.1088/0022-3727/38/13/014Suche in Google Scholar

[29] P. Bermel, J. Lee, J. D. Joannopoulos, I. Celanovic and M. Soljacie, Selective solar absorbers, Annu. Rev. Heat Transf., (2012), 231–254, Table 1.10.1615/AnnualRevHeatTransfer.2012004119Suche in Google Scholar

Received: 2018-02-07
Revised: 2018-03-12
Accepted: 2018-04-03
Published Online: 2018-04-19
Published in Print: 2018-10-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2018-0004/html?lang=de
Button zum nach oben scrollen