Startseite Mathematik Set-stabilizers in solvable permutation groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Set-stabilizers in solvable permutation groups

  • David Gluck ORCID logo EMAIL logo
Veröffentlicht/Copyright: 1. Juli 2025

Abstract

Let 𝐺 be a finite solvable permutation group. Then, modulo a possibly trivial normal elementary abelian 3-subgroup, some set-stabilizer in 𝐺 is a 2-group.


Dedicated to the memory of Marty Isaacs


Acknowledgements

I thank Luca Sabatini for helpful communications.

  1. Communicated by: Michael Giudici

References

[1] L. Babai, Asymmetric coloring of locally finite graphs and profinite permutation groups: Tucker’s conjecture confirmed, J. Algebra 607 (2022), 64–106. 10.1016/j.jalgebra.2021.10.033Suche in Google Scholar

[2] D. Gluck, Trivial set-stabilizers in finite permutation groups, Canad. J. Math. 35 (1983), no. 1, 59–67. 10.4153/CJM-1983-005-2Suche in Google Scholar

[3] D. Gluck and O. Manz, Prime factors of character degrees of solvable groups, Bull. Lond. Math. Soc. 19 (1987), no. 5, 431–437. 10.1112/blms/19.5.431Suche in Google Scholar

[4] D. Gluck and T. R. Wolf, Brauer’s height conjecture for 𝑝-solvable groups, Trans. Amer. Math. Soc. 282 (1984), no. 1, 137–152. 10.1090/S0002-9947-1984-0728707-2Suche in Google Scholar

[5] D. Gluck and T. R. Wolf, Defect groups and character heights in blocks of solvable groups. II, J. Algebra 87 (1984), no. 1, 222–246. 10.1016/0021-8693(84)90168-6Suche in Google Scholar

[6] I. M. Isaacs, Character Theory of Finite Groups, Pure Appl. Math. 69, Academic Press, New York, 1976. Suche in Google Scholar

[7] O. Manz and T. R. Wolf, Representations of Solvable Groups, London Math. Soc. Lecture Note Ser. 185, Cambridge University, Cambridge, 1993. 10.1017/CBO9780511525971Suche in Google Scholar

[8] L. Sabatini, On stabilizers in finite permutation groups, preprint (2024), https://arxiv.org/abs/2411.18534. Suche in Google Scholar

[9] A. Seress, Primitive groups with no regular orbits on the set of subsets, Bull. Lond. Math. Soc. 29 (1997), no. 6, 697–704. 10.1112/S0024609397003536Suche in Google Scholar

[10] T. R. Wolf, Solvable and nilpotent subgroups of GL ( n , q m ) , Canad. J. Math. 34 (1982), no. 5, 1097–1111. 10.4153/CJM-1982-079-5Suche in Google Scholar

Received: 2025-01-02
Revised: 2025-06-04
Published Online: 2025-07-01
Published in Print: 2025-11-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2025-0002/html
Button zum nach oben scrollen