Abstract
In finite group theory, π-length is an important invariant for a π-solvable group. The famous HallβHigman π-length theorem states that the π-length of a π-solvable group is bounded by the nilpotent class of its Sylow π-subgroups. In this paper, we improve this result by giving a better estimate on the π-length of a π-solvable group in terms of the π-class of its Sylow π-subgroups.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 12371021
Funding statement: Project supported by NSFC (12371021).
-
Communicated by: Bettina Eick
References
[1] R. Baer, Der Kern, eine charakteristische Untergruppe, Compos. Math. 1 (1935), 254β283. Search in Google Scholar
[2] S. Bauman, π-normality and π-length of a finite group, Math. Z. 87 (1965), 345β347. 10.1007/BF01113204Search in Google Scholar
[3] H.βG. Bray, W.βE. Deskins, D. Johnson, J.βF. Humphreys, B.βM. Puttaswamaiah, P. Venzke and G.βL. Walls, Between Nilpotent and Solvable, Polygonal, Washington, 1982. Search in Google Scholar
[4] R.βA. Bryce and J. Cossey, The Wielandt subgroup of a finite soluble group, J. Lond. Math. Soc. (2) 40 (1989), no. 2, 244β256. 10.1112/jlms/s2-40.2.244Search in Google Scholar
[5] A.βR. Camina, The Wielandt length of finite groups, J. Algebra 15 (1970), 142β148. 10.1016/0021-8693(70)90091-8Search in Google Scholar
[6] K. Doerk and T. Hawkes, Finite Solvable Groups, Walter de Gruyter, Berlin, 1992. 10.1515/9783110870138Search in Google Scholar
[7] D. Gorenstein, Finite Groups, Chelsea, New York, 1980. Search in Google Scholar
[8] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg, 2015. 10.1007/978-3-662-45747-4Search in Google Scholar
[9] P. Hall and G. Higman, On the π-length of π-soluble groups and reduction theorems for Burnsideβs problem, Proc. Lond. Math. Soc. (3) 6 (1956), 1β42. 10.1112/plms/s3-6.1.1Search in Google Scholar
[10] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss. 134, Springer, Berlin, 1967. 10.1007/978-3-642-64981-3Search in Google Scholar
[11] I.βM. Isaacs, Finite Group Theory, Grad. Stud. Math. 92, American Mathematical Society, Providence, 2008. Search in Google Scholar
[12] E.βA. Ormerod, On the Wielandt length of metabelian π-groups, Arch. Math. (Basel) 57 (1991), no. 3, 212β215. 10.1007/BF01196849Search in Google Scholar
[13] E. Schenkman, On the norm of a group, Illinois J. Math. 4 (1960), 150β152. 10.1215/ijm/1255455741Search in Google Scholar
[14] R. Schmidt, Subgroup Lattices of Groups, De Gruyter Exp. Math. 14, Walter de Gruyter, Berlin, 1994. 10.1515/9783110868647Search in Google Scholar
[15] N. Su and Y. Wang, On the π-length and the Wielandt length of a finite π-soluble group, Bull. Aust. Math. Soc. 88 (2013), no. 3, 453β459. 10.1017/S0004972713000026Search in Google Scholar
[16] H. Wielandt, Γber den Normalisator der subnormalen Untergruppen, Math. Z. 69 (1958), 463β465. 10.1007/BF01187422Search in Google Scholar
Β© 2025 Walter de Gruyter GmbH, Berlin/Boston