The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review
-
Krishnendu Adhikary
, Riya Sarkar
, Sriparna Maity , Ipsita Banerjee , Prity Chatterjee , Koushik Bhattacharya, Deepika Ahuja
, Nirmalya Kumar Sinha und Rajkumar Maiti
Abstract
Type 2 diabetes mellitus is a long-lasting endocrine disorder characterized by persistent hyperglycaemia, which is often triggered by an entire or relative inadequacy of insulin production or insulin resistance. As a result of resistance to insulin (IR) and an overall lack of insulin in the body, type 2 diabetes mellitus (T2DM) is a metabolic illness that is characterized by hyperglycaemia. Notably, the occurrence of vascular complications of diabetes and the advancement of IR in T2DM are accompanied by dysbiosis of the gut microbiota. Due to the difficulties in managing the disease and the dangers of multiple accompanying complications, diabetes is a chronic, progressive immune-mediated condition that plays a significant clinical and health burden on patients. The frequency and incidence of diabetes among young people have been rising worldwide. The relationship between the gut microbiota composition and the physio-pathological characteristics of T2DM proposes a novel way to monitor the condition and enhance the effectiveness of therapies. Our knowledge of the microbiota of the gut and how it affects health and illness has changed over the last 20 years. Species of the genus Eubacterium, which make up a significant portion of the core animal gut microbiome, are some of the recently discovered ‘generation’ of possibly helpful bacteria. In this article, we have focused on pathogenesis and therapeutic approaches towards T2DM, with a special reference to gut bacteria from ancient times to the present day.
Acknowledgments
The Principal of Bankura Christian College and Director, Paramedical College Durgapur is to be thanked by the authors for their unwavering inspiration and spiritual support of the review work.
-
Research ethics: Not applicable.
-
Informed consent: Not required.
-
Author contributions: KA, RS, and SM: Conceptualization, data curation, writing, and original draft preparation. RM: Methodology, data curation, writing (original draft preparation), reviewing, and editing. IB, PC, KB, DA and NKS: Conceptualization, validation, writing, reviewing, and editing.
-
Competing interests: The authors declare that they have no conflict of interest in the present review work. The manuscript has not been submitted for publication in another journal.
-
Research funding: The current review was conducted without support from any extramural sources.
-
Data availability: Not required.
References
1. Padhi, S, Nayak, AK, Behera, A. Type II diabetes mellitus: a review on recent drug-based therapeutics. Biomed Pharmacother 2020;131:110708. https://doi.org/10.1016/j.biopha.2020.110708.Suche in Google Scholar PubMed
2. Nauck, MA, Meier, JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016;4:525–36. https://doi.org/10.1016/S2213-8587(15)00482-9.Suche in Google Scholar PubMed
3. Tanase, DM, Gosav, EM, Neculae, E, Costea, CF, Ciocoiu, M, Hurjui, LL, et al.. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM). Nutrients 2020;12:3719. https://doi.org/10.3390/nu12123719.Suche in Google Scholar PubMed PubMed Central
4. Nery, C, Moraes, SRA, Novaes, KA, Bezerra, MA, Silveira, PVC, Lemos, A, et al.. Effectiveness of resistance exercise compared to aerobic exercise without insulin therapy in patients with type 2 diabetes mellitus: a meta-analysis. Braz J Phys Ther 2017;21:400–15. https://doi.org/10.1016/j.bjpt.2017.06.004.Suche in Google Scholar PubMed PubMed Central
5. Petrie, MC, Verma, S, Docherty, KF, Inzucchi, SE, Anand, I, Belohlávek, J, et al.. Effect of Dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA 2020;323:1353–68. https://doi.org/10.1001/jama.2020.1906.Suche in Google Scholar PubMed PubMed Central
6. Palumbo, C, Nicolaci, N, La Manna, AA, Branek, N, Pissano, MN. Association between central diabetes insipidus and type 2 diabetes mellitus. Medicina 2018;78:127–30.Suche in Google Scholar
7. Palacios, OM, Kramer, M, Maki, KC. Diet and prevention of type 2 diabetes mellitus: beyond weight loss and exercise. Expet Rev Endocrinol Metabol 2019;14:1–12. https://doi.org/10.1080/17446651.2019.1554430.Suche in Google Scholar PubMed
8. Dagogo-Jack, S, Santiago, JV. Pathophysiology of type 2 diabetes and modes of action of therapeutic interventions. Arch Intern Med 1997;157:1802–17. https://doi.org/10.1001/archinte.157.16.1802.Suche in Google Scholar
9. Mortada, I. Hyperuricemia, Type 2 Diabetes mellitus, and hypertension: an emerging association. Curr Hypertens Rep 2017;19:69. https://doi.org/10.1007/s11906-017-0770-x.Suche in Google Scholar PubMed
10. Agarwal, R, Anker, SD, Bakris, G, Filippatos, G, Pitt, B, Rossing, P, et al.. Investigating new treatment opportunities for patients with chronic kidney disease in type 2 diabetes: the role of finer none. Nephrol Dial Transplant 2022;37:1014–23. https://doi.org/10.1093/ndt/gfaa294.Suche in Google Scholar PubMed PubMed Central
11. Arif, M, Sadayappan, S, Becker, RC, Martin, LJ, Urbina, EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019;42:1099–113. https://doi.org/10.1038/s41440-019-0248-0.Suche in Google Scholar PubMed
12. Adriaenssens, AE, Biggs, EK, Darwish, T, Tadross, J, Sukthankar, T, Girish, M, et al.. Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metabol 2019;30:987–96.e6. https://doi.org/10.1016/j.cmet.2019.07.013.Suche in Google Scholar PubMed PubMed Central
13. Kamarudin, MNA, Sarker, MMR, Zhou, JR, Parhar, I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J Eexp Clin Cancer Res 2019;38:491. https://doi.org/10.1186/s13046-019-1495-2.Suche in Google Scholar PubMed PubMed Central
14. Sharma, D, Verma, S, Vaidya, S, Kalia, K, Tiwari, V. Recent updates on GLP-1 agonists: current advancements and challenges. Biomed Pharmacother 2018;108:952–62. https://doi.org/10.1016/j.biopha.2018.08.088.Suche in Google Scholar PubMed
15. Musale, V, Abdel-Wahab, YHA, Flatt, PR, Conlon, JM, Mangoni, ML. Insulinotropic, glucose-lowering, and beta-cell anti-apoptotic actions of peptides related to esculentin-1a(1-21).NH2. Amino Acids 2018;50:723–34. https://doi.org/10.1007/s00726-018-2551-5.Suche in Google Scholar PubMed
16. Burillo, J, Marqués, P, Jiménez, B, González-Blanco, C, Benito, M, Guillén, C. Insulin resistance and diabetes mellitus in Alzheimer’s disease. Cells 2021;10:1236. https://doi.org/10.3390/cells10051236.Suche in Google Scholar PubMed PubMed Central
17. DeFronzo, RA, Ferrannini, E, Groop, L, Henry, RR, Herman, WH, Holst, JJ, et al.. Type 2 diabetes mellitus. Nat Rev Dis Prim 2015;1:15019. https://doi.org/10.1038/nrdp.2015.19.Suche in Google Scholar PubMed
18. Hudish, LI, Reusch, JE, Sussel, L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 2019;129:4001–8. https://doi.org/10.1172/JCI129188.Suche in Google Scholar PubMed PubMed Central
19. Taylor, R, Al-Mrabeh, A, Sattar, N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol 2019;7:726–36. https://doi.org/10.1016/S2213-8587(19)30076-2.Suche in Google Scholar PubMed
20. Sarparanta, J, García-Macia, M, Singh, R. Autophagy and mitochondria in obesity and type 2 Diabetes. Curr Diabetes Rev 2017;13:352–69. https://doi.org/10.2174/1573399812666160217122530.Suche in Google Scholar PubMed
21. Maiti, R. Hypoglycemic and antioxidant potency of ethyl acetate fraction of hydro-methanolic extract (60:40) of Tamarindus indica Linn. seed in streptozotocin-induced diabetic experimental animal. Int J Health Sci 2021;6:11164–82. https://doi.org/10.53730/ijhs.v6nS5.10964.Suche in Google Scholar
22. Maiti, R, Das, UK, Ghosh, D. Attenuation of hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats by aqueous extract of seed of Tamarindus indica. Biol Pharm Bull 2005;28:1172–6. https://doi.org/10.1248/bpb.28.1172.Suche in Google Scholar PubMed
23. Kahn, SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 2003;46:3–19. https://doi.org/10.1007/s00125-002-1009-0.Suche in Google Scholar PubMed
24. Franks, PW, McCarthy, MI. Exposing the exposures responsible for type 2 diabetes and obesity. Science 2016;354:69–73. https://doi.org/10.1126/science.aaf5094.Suche in Google Scholar PubMed
25. Lyssenko, V, Lupi, R, Marchetti, P, Del Guerra, S, Orho-Melander, M, Almgren, P, et al.. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 2007;117:2155–63. https://doi.org/10.1172/JCI30706.10.1172/JCI30706Suche in Google Scholar PubMed PubMed Central
26. Tarnowski, M, Malinowski, D, Safranow, K, Dziedziejko, V, Czerewaty, M, Pawlik, A. Haematopoietically expressed homeobox (HHEX) gene polymorphism (rs5015480) is associated with increased risk of gestational diabetes mellitus. Clin Genet 2017;91:843–8. https://doi.org/10.1111/cge.12875.Suche in Google Scholar PubMed
27. Wang, J, Kilic, G, Aydin, M, Burke, Z, Oliver, G, Sosa-Pineda, B. Controls pancreas morphogenesis and participates in the production of "secondary transition" pancreatic endocrine cells. Dev Biol 2005;286:182–94. https://doi.org/10.1016/j.ydbio.2005.07.021.Suche in Google Scholar PubMed
28. Franks, PW. Gene × environment interactions in type 2 diabetes. Curr Diabetes Rep 2011;11:552–61. https://doi.org/10.1007/s11892-011-0224-9.Suche in Google Scholar PubMed
29. Aune, D, Norat, T, Leitzmann, M, Tonstad, S, Vatten, LJ. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol 2015;30:529–42. https://doi.org/10.1007/s10654-015-0056-z.Suche in Google Scholar PubMed
30. Shan, Z, Ma, H, Xie, M, Yan, P, Guo, Y, Bao, W, et al.. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 2015;38:529–37. https://doi.org/10.2337/dc14-2073.Suche in Google Scholar PubMed
31. Pan, A, Wang, Y, Talaei, M, Hu, FB, Wu, T. Relation of active, passive, and quitting smoking with incident type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2015;3:958–67. https://doi.org/10.1016/S2213-8587(15)00316-2.Suche in Google Scholar PubMed PubMed Central
32. Talaei, M, Wang, YL, Yuan, JM, Pan, A, Koh, WP. Meat, dietary heme iron, and risk of type 2 diabetes mellitus: the Singapore Chinese Health Study. Am J Epidemiol 2017;186:824–33. https://doi.org/10.1093/aje/kwx156.Suche in Google Scholar PubMed PubMed Central
33. Wallace, MD, Metzger, NL. Optimizing the treatment of steroid-induced hyperglycemia. Ann Pharmacother 2018;52:86–90. https://doi.org/10.1177/1060028017728297.Suche in Google Scholar PubMed
34. Bonaventura, A, Montecucco, F. Steroid-induced hyperglycemia: an underdiagnosed problem or clinical inertia? A narrative review. Diabetes Res Clin Pract 2018;139:203–20. https://doi.org/10.1016/j.diabres.2018.03.006.Suche in Google Scholar PubMed
35. Shah, P, Kalra, S, Yadav, Y, Deka, N, Lathia, T, Jacob, JJ, et al.. Management of glucocorticoid-induced hyperglycemia. Diabetes Metab Syndr Obes 2022;15:1577–88. https://doi.org/10.2147/DMSO.S330253.Suche in Google Scholar PubMed PubMed Central
36. Uchinuma, H, Ichijo, M, Harima, N, Tsuchiya, K. Dulaglutide improves glucocorticoid-induced hyperglycemia in inpatient care and reduces dose and injection frequency of insulin. BMC Endocr Disord 2020;20:58. https://doi.org/10.1186/s12902-020-0542-5.Suche in Google Scholar PubMed PubMed Central
37. Do, TTH, Marie, G, Héloïse, D, Guillaume, D, Marthe, M, Bruno, F, et al.. Glucocorticoid-induced insulin resistance is related to macrophage visceral adipose tissue infiltration. J Steroid Biochem Mol Biol 2019;185:150–62. https://doi.org/10.1016/j.jsbmb.2018.08.010.Suche in Google Scholar PubMed
38. vanBommel, EJM, de Jongh, RT, Brands, M, Heijboer, AC, den Heijer, M, Serlie, MJ, et al.. The osteoblast: linking glucocorticoid-induced osteoporosis and hyperglycaemia? A post-hoc analysis of a randomised clinical trial. Bone 2018;112:173–6. https://doi.org/10.1016/j.bone.2018.04.025.Suche in Google Scholar PubMed
39. Merkofer, F, Struja, T, Delfs, N, Spagnuolo, CC, Hafner, JF, Kupferschmid, K, et al.. Glucose control after glucocorticoid administration in hospitalized patients – a retrospective analysis. BMC Endocr Disord 2022;22:8. https://doi.org/10.1186/s12902-021-00914-3.Suche in Google Scholar PubMed PubMed Central
40. Nunes, EA, Gonçalves-Neto, LM, Ferreira, FB, dos Santos, C, Fernandes, LC, Boschero, AC, et al.. Glucose intolerance induced by glucocorticoid excess is further impaired by co-administration with β-hydroxy-β-methylbutyrate in rats. Appl Physiol Nutr Metabol 2013;38:1137–46. https://doi.org/10.1139/apnm-2012-0456.Suche in Google Scholar PubMed
41. Gado, M, Heinrich, A, Wiedersich, D, Sameith, K, Dahl, A, Alexaki, VI, et al.. Activation of β-adrenergic receptor signaling prevents glucocorticoid-induced obesity and adipose tissue dysfunction in male mice. Am J Physiol Endocrinol Metab 2023;324:E514–30. https://doi.org/10.1152/ajpendo.00259.2022.Suche in Google Scholar PubMed
42. Arif, M, Sadayappan, S, Becker, RC, Martin, LJ, Urbina, EM. Epigenetic modification: a regulatory mechanism in essential hypertension. Hypertens Res 2019;42:1099–113. https://doi.org/10.1038/s41440-019-0248-0.Suche in Google Scholar PubMed
43. Dayeh, T, Ling, C. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes? Biochem Cell Biol 2015;93:511–21. https://doi.org/10.1139/bcb-2015-0057.Suche in Google Scholar PubMed
44. Karachanak-Yankova, S, Dimova, R, Nikolova, D, Nesheva, D, Koprinarova, M, Maslyankov, S, et al.. Epigenetic alterations in patients with type 2 diabetes mellitus. Balkan J Med Genet 2016;18:15–24. https://doi.org/10.1515/bjmg-2015-0081.Suche in Google Scholar PubMed PubMed Central
45. Moosavi, A, Motevalizadeh Ardekani, A. Role of epigenetics in biology and human diseases. Iran Biomed J 2016;20:246–58. https://doi.org/10.22045/ibj.2016.01.Suche in Google Scholar PubMed PubMed Central
46. Luo, A, Xie, Z, Wang, Y, Wang, X, Li, S, Yan, J, et al.. Type 2 diabetes mellitus-associated cognitive dysfunction: advances in potential mechanisms and therapies. Neurosci Biobehav Rev 2022;137:104642. https://doi.org/10.1016/j.neubiorev.2022.104642.Suche in Google Scholar PubMed
47. Cao, H, Baranova, A, Wei, X, Wang, C, Zhang, F. Bidirectional causal associations between type 2 diabetes and COVID-19. J Med Virol 2023;95:e28100. https://doi.org/10.1002/jmv.28100.Suche in Google Scholar PubMed PubMed Central
48. Xue, A, Wu, Y, Zhu, Z, Zhang, F, Kemper, KE, Zheng, Z, et al.. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun 2018;9:2941. https://doi.org/10.1038/s41467-018-04951-w.Suche in Google Scholar PubMed PubMed Central
49. Liu, Z, Dai, X, Zhang, H, Shi, R, Hui, Y, Jin, X, et al.. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat Commun 2020;11:855. https://doi.org/10.1038/s41467-020-14676-4.Suche in Google Scholar PubMed PubMed Central
50. Cefalu, WT. Insulin resistance: cellular and clinical concepts. Exp Biol Med 2001;226:13–26. https://doi.org/10.1177/153537020122600103.Suche in Google Scholar PubMed
51. Trümper, A, Trümper, K, Trusheim, H, Arnold, R, Göke, B, Hörsch, D. Glucose-dependent insulinotropic polypeptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 2001;15:1559–70. https://doi.org/10.1210/mend.15.9.0688.Suche in Google Scholar PubMed
52. Schirra, J, Katschinski, M, Weidmann, C, Schäfer, T, Wank, U, Arnold, R, et al.. Gastric emptying and release of incretin hormones after glucose ingestion in humans. J Clin Investig 1996;97:92–103. https://doi.org/10.1172/JCI118411.Suche in Google Scholar PubMed PubMed Central
53. Kim, W, Egan, JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008;60:470–512. https://doi.org/10.1124/pr.108.000604.Suche in Google Scholar PubMed PubMed Central
54. Gérard, C, Vidal, H. Impact of gut microbiota on host glycemic control. Front Endocrinol 2019;10:29. https://doi.org/10.3389/fendo.2019.00029.Suche in Google Scholar PubMed PubMed Central
55. Lewis, DM. A Systematic review of exocrine pancreatic insufficiency prevalence and treatment in type 1 and type 2 diabetes. Diabetes Technol Therapeut 2023;25:659–72. https://doi.org/10.1089/dia.2023.0157.Suche in Google Scholar PubMed
56. Kong, D, Vong, L, Parton, LE, Ye, C, Tong, Q, Hu, X, et al.. Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metabol 2010;12:545–52. https://doi.org/10.1016/j.cmet.2010.09.013.Suche in Google Scholar PubMed PubMed Central
57. Mergenthaler, P, Lindauer, U, Dienel, GA, Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 2013;36:587–97. https://doi.org/10.1016/j.tins.2013.07.001.Suche in Google Scholar PubMed PubMed Central
58. Macedo, MP, Lima, IS, Gaspar, JM, Afonso, RA, Patarrão, RS, Kim, YB, et al.. Risk of postprandial insulin resistance: the liver/vagus rapport. Rev Endocr Metab Disord 2014;15:67–77. https://doi.org/10.1007/s11154-013-9281-5.Suche in Google Scholar PubMed PubMed Central
59. Yoon, NA, Diano, S. Hypothalamic glucose-sensing mechanisms. Diabetologia 2021;64:985–93. https://doi.org/10.1007/s00125-021-05395-6.Suche in Google Scholar PubMed PubMed Central
60. Henriksen, EJ, Diamond-Stanic, MK, Marchionne, EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med 2011;51:993–9. https://doi.org/10.1016/j.freeradbiomed.2010.12.005.Suche in Google Scholar PubMed PubMed Central
61. Chan, O, Sherwin, R. Influence of VMH fuel sensing on hypoglycemic responses. Trends Endocrinol Metabol 2013;24:616–24. https://doi.org/10.1016/j.tem.2013.08.005.Suche in Google Scholar PubMed PubMed Central
62. Azzalin, A, Nato, G, Parmigiani, E, Garello, F, Buffo, A, Magrassi, L, et al.. Inhibitors of GLUT/SLC2A enhance the action of BCNU and temozolomide against high-grade gliomas. Neoplasia 2017;19:364–73. https://doi.org/10.1016/j.neo.2017.02.009.Suche in Google Scholar PubMed PubMed Central
63. Tilekar, K, Upadhyay, N, Hess, JD, Macias, LH, Mrowka, P, Aguilera, RJ, et al.. anti-leukemic potential. Eur J Med Chem 2020;202:112603. https://doi.org/10.1016/j.ejmech.2020.112603.Suche in Google Scholar PubMed PubMed Central
64. Reckzeh, ES, Waldmann, H. Development of glucose transporter (GLUT) inhibitors. Eur J Org Chem 2020;2020:2321–9. https://doi.org/10.1002/ejoc.201901353.Suche in Google Scholar PubMed PubMed Central
65. Kitagawa, M, Ikeda, S, Tashiro, E, Soga, T, Imoto, M. Metabolomic identification of the target of the filopodia protrusion inhibitor glucopiericidin A. Chem Biol 2010;17:989–98. https://doi.org/10.1016/j.chembiol.2010.06.017.Suche in Google Scholar PubMed
66. Kasahara, T, Kasahara, M. Expression of the rat GLUT1 glucose transporter in the yeast Saccharomyces cerevisiae. Biochem J 1996;315:177–82. https://doi.org/10.1042/bj3150177.Suche in Google Scholar PubMed PubMed Central
67. Liu, Y, Cao, Y, Zhang, W, Bergmeier, S, Qian, Y, Akbar, H, et al.. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Therapeut 2012;11:1672–82. https://doi.org/10.1158/1535-7163.MCT-12-0131.Suche in Google Scholar PubMed
68. Caruso, MA, Sheridan, MA. The expression of insulin and insulin receptor mRNAs is regulated by nutritional state and glucose in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2012;175:321–8. https://doi.org/10.1016/j.ygcen.2011.11.029.Suche in Google Scholar PubMed
69. Vajo, Z, Duckworth, WC. Genetically engineered insulin analogs: diabetes in the new millennium. Pharmacol Rev 2000;52:1–9.10.1016/S0031-6997(24)01433-9Suche in Google Scholar
70. Vajo, Z, Fawcett, J, Duckworth, WC. Recombinant DNA technology in the treatment of diabetes: insulin analogs. Endocr Rev 2001;22:706–17. https://doi.org/10.1210/edrv.22.5.0442.Suche in Google Scholar PubMed
71. Liu, Y, Cao, Y, Zhang, W, Bergmeier, S, Qian, Y, Akbar, H, et al.. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nat Commun 2020;11:5015. https://doi.org/10.1038/s41467-020-18414-8.Suche in Google Scholar PubMed PubMed Central
72. Gurung, M, Li, Z, You, H, Rodrigues, R, Jump, DB, Morgun, A, et al.. Role of gut microbiota in type 2 diabetes pathophysiology. Biomedicine 2020;51:102590. https://doi.org/10.1016/j.ebiom.2019.11.051.Suche in Google Scholar PubMed PubMed Central
73. Sharma, S, Tripathi, P. Gut microbiome and type 2 diabetes: where we are and where to go? J Nutr Biochem 2019;63:101–8. https://doi.org/10.1016/j.jnutbio.2018.10.003.Suche in Google Scholar PubMed
74. Zhou, Z, Sun, B, Yu, D, Zhu, C. Gut microbiota: an important player in type 2 diabetes mellitus. Front Cell Infect Microbiol 2022;12:834485. https://doi.org/10.3389/fcimb.2022.834485.Suche in Google Scholar PubMed PubMed Central
75. Scheithauer, TPM, Rampanelli, E, Nieuwdorp, M, Vallance, BA, Verchere, CB, van Raalte, DH, et al.. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol 2020;11:571731. https://doi.org/10.3389/fimmu.2020.571731.Suche in Google Scholar PubMed PubMed Central
76. Yang, G, Wei, J, Liu, P, Zhang, Q, Tian, Y, Hou, G, et al.. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism 2021;117:154712. https://doi.org/10.1016/j.metabol.2021.154712.Suche in Google Scholar PubMed
77. Qi, Q, Li, J, Yu, B, Moon, JY, Chai, JC, Merino, J, et al.. Host and gut microbial tryptophan metabolism and type 2 diabetes: an integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut 2022;71:1095–105. https://doi.org/10.1136/gutjnl-2021-324053.Suche in Google Scholar PubMed PubMed Central
78. Muñoz-Garach, A, Diaz-Perdigones, C, Tinahones, FJ. Gut microbiota and type 2 diabetes mellitus. Endocrinol Nutr 2016;63:560–8. https://doi.org/10.1016/j.endonu.2016.07.008.Suche in Google Scholar PubMed
79. Zhai, L, Wu, J, Lam, YY, Kwan, HY, Bian, ZX, Wong, HLX. Gut-microbial metabolites, probiotics and their roles in type 2 diabetes. Int J Mol Sci 2021;22:12846. https://doi.org/10.3390/ijms222312846.Suche in Google Scholar PubMed PubMed Central
80. Hosomi, K, Saito, M, Park, J, Murakami, H, Shibata, N, Ando, M, et al.. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat Commun 2022;13:4477. https://doi.org/10.1038/s41467-022-32015-7.Suche in Google Scholar PubMed PubMed Central
81. Salgaço, MK, Oliveira, LGS, Costa, GN, Bianchi, F, Sivieri, K. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Appl Microbiol Biotechnol 2019;103:9229–38. https://doi.org/10.1007/s00253-019-10156-y.Suche in Google Scholar PubMed
82. Cui, A, Fan, H, Zhang, Y, Zhang, Y, Niu, D, Liu, S, et al.. Dexamethasone-induced Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia. J Clin Invest 2019;129:2266–78. https://doi.org/10.1172/JCI66062.Suche in Google Scholar PubMed PubMed Central
83. Elena, C, Chiara, M, Angelica, B, Chiara, MA, Laura, N, Chiara, C, et al.. Hyperglycemia and diabetes induced by glucocorticoids in nondiabetic and diabetic patients: revision of literature and personal considerations. Curr Pharm Biotechnol 2018;19:1210–20. https://doi.org/10.2174/1389201020666190102145305.Suche in Google Scholar PubMed
84. Brooks, D, Schulman-Rosenbaum, R, Griff, M, Lester, J, Low Wang, CC. Glucocorticoid-induced hyperglycemia including dxamethasone-associated hyperglycemia in COVID-19 infection: a systematic review. Endocr Pract 2022;28:1166–77. https://doi.org/10.1016/j.eprac.2022.07.014.Suche in Google Scholar PubMed PubMed Central
85. Stone, AC, Dungan, K, Gaborcik, JW. Insulin NPH for steroid-induced hyperglycemia: predictors for success. Pharmacother 2021;41:804–10. https://doi.org/10.1002/phar.2616.Suche in Google Scholar PubMed
86. Brady, VJ, Grimes, D, Armstrong, T, LoBiondo-Wood, G. Management of steroid-induced hyperglycemia in hospitalized patients with cancer: a review. Oncol Nurs Forum 2014;41:E355–65. https://doi.org/10.1188/14.ONF.E355-E365.Suche in Google Scholar PubMed
87. Fathallah, N, Slim, R, Larif, S, Hmouda, H, Ben Salem, C. Drug-induced hyperglycaemia and diabetes. Drug Saf 2015;38:1153–68. https://doi.org/10.1007/s40264-015-0339-z.Suche in Google Scholar PubMed
88. Myers, AK, Khan, M, Choi, S, Garnica, P, Stoffels, G, Lin, A, et al.. Implementation of a weight-based protocol for the management of steroid-induced hyperglycemia. Am J Therapeut 2020;27:e392–9. https://doi.org/10.1097/MJT.0000000000000998.Suche in Google Scholar PubMed
89. Lu, Y, Wang, E, Chen, Y, Zhou, B, Zhao, J, Xiang, L, et al.. Obesity-induced excess of 17-hydroxyprogesterone promotes hyperglycemia through activation of glucocorticoid receptor. J Clin Invest 2020;130:3791–804. https://doi.org/10.1172/JCI134485.Suche in Google Scholar PubMed PubMed Central
90. Dutcher, JM, Creswell, JD. The role of brain reward pathways in stress resilience and health. Neurosci Biobehav Rev 2018;95:559–67. https://doi.org/10.1016/j.neubiorev.2018.10.014.Suche in Google Scholar PubMed
91. de Vos, WM, Tilg, H, Van Hul, M, Cani, PD. Gut microbiome and health: mechanistic insights. Gut 2022;71:1020–32. https://doi.org/10.1136/gutjnl-2021-326789.Suche in Google Scholar PubMed PubMed Central
92. Iatcu, CO, Steen, A, Covasa, M. Gut microbiota and complications of type-2 diabetes. Nutritients 2021;14:166. https://doi.org/10.3390/nu14010166.Suche in Google Scholar PubMed PubMed Central
93. Makki, K, Deehan, EC, Walter, J, Bäckhed, F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018;23:705–15. https://doi.org/10.1016/j.chom.2018.05.012.Suche in Google Scholar PubMed
94. Cani, PD. Human gut microbiome: hopes, threats and promises. Gut 2018;67:1716–25. https://doi.org/10.1136/gutjnl-2018-316723.Suche in Google Scholar PubMed PubMed Central
95. Rodrigues, VF, Elias-Oliveira, J, Pereira, ÍS, Pereira, JA, Barbosa, SC, Machado, MSG, et al.. Akkermansia muciniphila and gut immune system: a good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front Immunol 2022;13:934695. https://doi.org/10.3389/fimmu.2022.934695.Suche in Google Scholar PubMed PubMed Central
96. Singer-Englar, T, Barlow, G, Mathur, R. Obesity, diabetes, and the gut microbiome: an updated review. Expet Rev Gastroenterol Hepatol 2019;13:3–15. https://doi.org/10.1080/17474124.2019.1543023.Suche in Google Scholar PubMed
97. Hasani, A, Ebrahimzadeh, S, Hemmati, F, Khabbaz, A, Gholizadeh, P. The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. J Med Microbiol 2021;70:10–109. https://doi.org/10.1099/jmm.0.001435.Suche in Google Scholar PubMed
98. Sehgal, R, de Mello, VD, Männistö, V, Lindström, J, Tuomilehto, J, Pihlajamäki, J, et al.. Indole propionic acid, a gut bacteria-produced tryptophan metabolite and the risk of type 2 diabetes and non-alcoholic fatty liver disease. Nutrition 2022;14:4695. https://doi.org/10.3390/nu14214695.Suche in Google Scholar PubMed PubMed Central
99. Hasain, Z, Mokhtar, NM, Kamaruddin, NA, Mohamed Ismail, NA, Razalli, NH, Gnanou, JV, et al.. Gut Microbiota and gestational diabetes mellitus: a review of host-gut microbiota interactions and their therapeutic potential. Front Cell Infect Microbiol 2020;10:188. https://doi.org/10.3389/fcimb.2020.00188.Suche in Google Scholar PubMed PubMed Central
100. Letchumanan, G, Abdullah, N, Marlini, M, Baharom, N, Lawley, B, Omar, MR, et al.. Gut microbiota composition in prediabetes and newly diagnosed type 2 diabetes: a systematic review of observational studies. Front Cell Infect Microbiol 2022;12:943427. https://doi.org/10.3389/fcimb.2022.943427.Suche in Google Scholar PubMed PubMed Central
101. Mokkala, K, Paulin, N, Houttu, N, Koivuniemi, E, Pellonperä, O, Khan, S, et al.. Metagenomics analysis of gut microbiota in response to diet intervention and gestational diabetes in overweight and obese women: a randomised, double-blind, placebo-controlled clinical trial. Gut 2021;70:309–18. https://doi.org/10.1136/gutjnl-2020-321643.Suche in Google Scholar PubMed
102. Jardon, KM, Canfora, EE, Goossens, GH, Blaak, EE. Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut 2022;71:1214–26. https://doi.org/10.1136/gutjnl-2020-323715.Suche in Google Scholar PubMed PubMed Central
103. Das, S, Maiti, R, Ghosh, D. Induction of oxidative stress on reproductive and metabolic organs in sodium fluoride-treated male albino rats: protective effect of testosterone and vitamin e coadministration. Toxicol Mech Methods 2005;15:271–7. https://doi.org/10.1080/15376520590968824.Suche in Google Scholar PubMed
104. Bordalo Tonucci, L, Dos Santos, KM, De Luces Fortes Ferreira, CL, Ribeiro, SM, De Oliveira, LL, Martino, HSD. Gut microbiota and probiotics: focus on diabetes mellitus. Crit Rev Food Sci Nutr 2017;57:2296–309. https://doi.org/10.1080/10408398.2014.934438.Suche in Google Scholar PubMed
105. Banerjee, P, Adhikary, K, Chatterjee, A, Sarkar, R, Bagchi, D, Ghosh, N, et al.. Digestion and gut microbiome. In: Bagchi, D, Ohia, S, editors. Nutrition and functional foods in boosting digestion, metabolism and immune health. United Kingdom: Academic Press; 2021:123–38 pp.10.1016/B978-0-12-821232-5.00029-XSuche in Google Scholar
106. Chowdhury, M, Chowdhury, S, Bhattacherjee, A, Roy, C, Sarkar, R, Adhikary, K, et al.. Natural antioxidants and nutraceuticals to fight against common human diseases: an overview. Eur Chem Bull 2023;12:1505–21. https://doi.org/10.48047/ecb.Suche in Google Scholar
107. Adhikary, K, Chatterjee, A, Banerjee, P. An updated review on nanomaterials for biomedical advancements: concepts and applications. Biosci Biotech Res Commun 2021;14:1428–34. https://doi.org/10.21786/bbrc/14.4.9.Suche in Google Scholar
108. Adhikary, K, Mohanty, S, Bandyopadhyay, B, Maiti, R, Bhattacharya, K, Karak, P. β-Amyloid peptide modulates peripheral immune responses and neuroinflammation in rats. Biomol Concepts 2024;15:20220042. https://doi.org/10.1515/bmc-2022-0042.Suche in Google Scholar PubMed
109. Bhattacharya, K, Dey, R, Sen, D, Paul, N, Basak, AK, Purkait, MP, et al.. Polycystic ovary syndrome and its management: in view of oxidative stress. Biomol Concepts 2024;15. https://doi.org/10.1515/bmc-2022-0038.Suche in Google Scholar PubMed
110. Mallick, S, Mandal, M, Roy, S, Pradhan, S, Mandal, S, Maiti, R, et al.. Effect of phytosterol extract from sesame seed on experimentally induced hyperlipidemic rats: dose dependent study. Int J Pharma Bio Sci 2016;7:370–7.10.22376/ijpbs/7.3.p10-19Suche in Google Scholar
111. Tiwari, PN, Rehman, A, Sreedhar, C, Jahan, ZA, Kundavaram, R, Bhattacharyya, I, et al.. Development and Validation of an RP-HPLC Method for the determination of rifapentine in bulk and pharmaceutical dosage form. Eur Chem Bull 2022;12:4114–28. https://doi.org/10.48047/ecb/2023.12.7.346.Suche in Google Scholar
112. Gurung, M, Li, Z, You, H, Rodrigues, R, Jump, DB, Morgun, A, et al.. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020;51:102590. https://doi.org/10.1016/j.ebiom.2019.11.051.Suche in Google Scholar PubMed PubMed Central
113. Li, SX, Guo, Y. Gut microbiome: new perspectives for type 2 diabetes prevention and treatment. World J Clin Cases 2023;11:7508–20. https://doi.org/10.12998/wjcc.v11.i31.7508.Suche in Google Scholar PubMed PubMed Central
114. Li, Y, Xia, S, Jiang, X, Feng, C, Gong, S, Ma, J, et al.. Gut microbiota and diarrhea: an updated review. Front Cell Infect Microbiol 2021;15:625210. https://doi.org/10.3389/fcimb.2021.625210.Suche in Google Scholar PubMed PubMed Central
115. Iatcu, CO, Steen, A, Covasa, M. Gut Microbiota and complications of type-2 diabetes. Nutrients 2021;30:166. https://doi.org/10.3390/nu14010166.Suche in Google Scholar PubMed PubMed Central
116. Shurrab, NT, Arafa, E-SA. Metformin: a review of its therapeutic efficacy and adverse effects. Obes Med 2020;17:100186. https://doi.org/10.1016/j.obmed.2020.100186.Suche in Google Scholar
117. Sola, D, Rossi, L, Schianca, GPC, Maffioli, P, Bigliocca, M, Mella, R, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci 2015; 12:840–8. https://doi.org/10.5114/aoms.2015.53304.Suche in Google Scholar PubMed PubMed Central
118. Saito, T, Ohashi, K, Utoh, R, Shimizu, H, Ise, K, Suzuki, H, et al.. Reversal of diabetes by the creation of neo-islet tissues into a subcutaneous site using islet cell sheets. Transplantation 2011;92:1231–6. https://doi.org/10.1097/TP.0b013e3182375835.Suche in Google Scholar PubMed
119. Oukes, T, Blauw, H, van Bon, AC, DeVries, JH, von Raesfeld, AM. Acceptance of the artificial pancreas: comparing the effect of technology readiness, product characteristics, and social influence between invited and self-selected respondents. J Diabetes Sci Technol 2019;13:899–909. https://doi.org/10.1177/1932296818823728.Suche in Google Scholar PubMed PubMed Central
120. Shin, H, Jo, S, Mikos, AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24:4353–64. https://doi.org/10.1016/S0142-9612(03)00339-9.Suche in Google Scholar
121. Jaén, ML, Vilà, L, Elias, I, Jimenez, V, Rodó, J, Maggioni, L, et al.. Long-term efficacy and safety of insulin and glucokinase gene therapy for diabetes: 8-year follow-up in dogs. Mol Ther Methods Clin Dev 2017;6:1–7. https://doi.org/10.1016/j.omtm.2017.03.008.Suche in Google Scholar PubMed PubMed Central
122. Sheridan, SD, Surampudi, V, Rao, RR. Analysis of embryoid bodies derived from human induced pluripotent stem cells as a means to assess pluripotency. Stem Cell Int 2012;2012:738910. https://doi.org/10.1155/2012/738910.Suche in Google Scholar PubMed PubMed Central
123. Won, G, Choi, SI, Kang, CH, Kim, GH. Lactiplanti bacillus plantarum MG4296 and Lacticaseibacillus paracasei MG5012 Ameliorates insulin resistance in Palmitic Acid-Induced HepG2 Cells and High fat diet-induced mice. Microorganisms 2021;9:1139. https://doi.org/10.3390/microorganisms9061139.Suche in Google Scholar PubMed PubMed Central
124. Zhao, S, Liu, W, Wang, J, Shi, J, Sun, Y, Wang, W, et al.. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J Mol Endocrinol 2017;58:1–14. https://doi.org/10.1530/JME-16-0054.Suche in Google Scholar PubMed
125. Waisundara, VY, Siu, SY, Hsu, A, Huang, D, Tan, BK. Baicalin upregulates the genetic expression of antioxidant enzymes in type-2 diabetic goto-kakizaki rats. Life Sci 2011;88:1016–25. https://doi.org/10.1016/j.lfs.2011.03.009.Suche in Google Scholar PubMed
126. Tao, Y, Mao, X, Xie, Z, Ran, X, Liu, X, Wang, Y, et al.. The prevalence of type 2 diabetes and hypertension in uygur and kazak populations. Cardiovasc Toxicol 2008;8:155–9. https://doi.org/10.1007/s12012-008-9024-0.Suche in Google Scholar PubMed
127. Brodmann, T, Endo, A, Gueimonde, M, Vinderola, G, Kneifel, W, de Vos, WM, et al.. Safety of novel microbes for human consumption: practical examples of assessment in the European Union. Front Microbiol 2017;8:1725. https://doi.org/10.3389/fmicb.2017.01725.Suche in Google Scholar PubMed PubMed Central
128. Huda, MN, Kim, M, Bennett, BJ. Modulating the microbiota as a therapeutic intervention for type 2 diabetes. Front Endocrinol 2021;7:12:632335. https://doi.org/10.3389/fendo.2021.632335.Suche in Google Scholar PubMed PubMed Central
129. Schrezenmeir, J, de Vrese, M. Probiotics, prebiotics, and synbiotics–approaching definition. Am J Clin Nutr 2001;73:361S–4S. https://doi.org/10.1093/ajcn/73.2.361s.Suche in Google Scholar PubMed
130. Markowiakśliżewska, PK, Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017;9:1021. https://doi.org/10.3390/nu9091021.Suche in Google Scholar PubMed PubMed Central
131. Kechagia, M, Basoulis, D, Konstantopoulou, S, Dimitriadi, D, Gyftopoulou, K, Skarmoutsou, N, et al.. Health benefits of probiotics: a review. Int Scholar lyres Notices 2013;2013:1–7. https://doi.org/10.5402/2013/481651.Suche in Google Scholar PubMed PubMed Central
132. Li, K, Zhang, L, Xue, J, Yang, X, Dong, X, Sha, L, et al.. Dietary inulin alleviates diverse stages of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in db/dbmice. Food Funct 2019;10:1915–27. https://doi.org/10.1039/C8FO02265H.Suche in Google Scholar PubMed
133. Verhoog, S, Taneri, PE, Roa Diaz, ZM, Marques-Vidal, P, Troup, JP, Bally, L, et al.. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and faecal bacterium prausnitzii: a systematic review. Nutrients 2019;11:1565. https://doi.org/10.3390/nu11071565.Suche in Google Scholar PubMed PubMed Central
134. Zhang, Y, Gu, Y, Ren, H, Wang, S, Zhong, H, Zhao, X, et al.. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTEstudy). Nat Commun 2020;11:5015. https://doi.org/10.1038/s41467-020-18414-8.Suche in Google Scholar PubMed PubMed Central
135. Mukherjee, T, Das, T, Basak, S, Mohanty, S, Adhikary, K, Chatterjee, P, et al.. Mucormycosis during COVID-19 era: a retrospective assessment. Infect Med 2024;100112. https://doi.org/10.1016/j.imj.2024.100112.Suche in Google Scholar PubMed PubMed Central
136. Mahboobi, S, Rahimi, F, Jafarnejad, S. Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: AMeta-analysis of randomized controlled trials. Adv Pharmaceut Bull 2018;8:565–74. https://doi.org/10.15171/apb.2018.065.Suche in Google Scholar PubMed PubMed Central
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorials
- Doctor patient relationship in AI era: trying to decipher the problem
- “Adiponcosis interplay: adipose tissue, microenvironment and prostate cancer”
- Minireview
- Interplay between male gonadal function and overall male health
- Reviews
- How should we differentiate hypoglycaemia in non-diabetic patients?
- Pozelimab, a human monoclonal immunoglobulin for the treatment of CHAPLE disease
- Cannabis effectiveness on immunologic potency of pulmonary contagion
- Exploring the impact of vitamin D on tendon health: a comprehensive review
- The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review
- Original Articles
- Long-term functional outcomes and predictors of efficacy in thulium laser enucleation of the prostate (ThuLEP) for benign prostatic hyperplasia (BPH): a retrospective observational study
- Investigating Majhool date (Phoenix dactylifera) consumption effects on fasting blood glucose in animals and humans
- A novel variant in the FLNB gene associated with spondylocarpotarsal synostosis syndrome
- Exploring pathogenic pathways in carpal tunnel syndrome: sterile inflammation and oxidative stress
Artikel in diesem Heft
- Frontmatter
- Editorials
- Doctor patient relationship in AI era: trying to decipher the problem
- “Adiponcosis interplay: adipose tissue, microenvironment and prostate cancer”
- Minireview
- Interplay between male gonadal function and overall male health
- Reviews
- How should we differentiate hypoglycaemia in non-diabetic patients?
- Pozelimab, a human monoclonal immunoglobulin for the treatment of CHAPLE disease
- Cannabis effectiveness on immunologic potency of pulmonary contagion
- Exploring the impact of vitamin D on tendon health: a comprehensive review
- The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review
- Original Articles
- Long-term functional outcomes and predictors of efficacy in thulium laser enucleation of the prostate (ThuLEP) for benign prostatic hyperplasia (BPH): a retrospective observational study
- Investigating Majhool date (Phoenix dactylifera) consumption effects on fasting blood glucose in animals and humans
- A novel variant in the FLNB gene associated with spondylocarpotarsal synostosis syndrome
- Exploring pathogenic pathways in carpal tunnel syndrome: sterile inflammation and oxidative stress