Home Effect of Post-annealing on the Photocatalytic Activity of Hydrothermally Synthesised Titania Nanotubes
Article
Licensed
Unlicensed Requires Authentication

Effect of Post-annealing on the Photocatalytic Activity of Hydrothermally Synthesised Titania Nanotubes

  • Shikha Wadhwa EMAIL logo , Jeremy W. J. Hamilton , Patrick S.M. Dunlop , Calum Dickinson and John A. Byrne
Published/Copyright: November 30, 2016
Become an author with De Gruyter Brill

Abstract

Heterogeneous photocatalysis has been reported to be effective for the degradation of a wide range of organic pollutants and the inactivation of pathogens in water. The use of nanostructured materials is one approach to improving photocatalytic efficiency. Titanate nanotubes were prepared by a hydrothermal synthesis and annealing yielded titania nanotubes, nanorods and crystals. These materials were characterized using XRD, XPS, BET and TEM. The photocatalytic activities were studied using phenol and formic acid as model pollutants. The as-prepared titanate nanotubes had a very high specific surface area (401 m2g-1). Annealing at 400°C gave anatase TiO2, however, the tubular structure collapsed to rods leaving only 30% nanotubes. The sample containing 30% nanotubes was found to be 3.4 times more active than Degussa P25 for the photocatalytic oxidation of formic acid. Annealing at temperatures higher than 400°C caused a reduction in photocatalytic activity for the oxidation of formic acid. This correlated to a decrease in the specific surface area of the samples. In the case of phenol, the rate of photocatalytic oxidation increased with increasing annealing temperature, with the nanocrystals obtained at 700°C showing the highest rate, yet still lower than that observed for P25.

Received: 2010-9-7
Revised: 2010-12-13
Accepted: 2010-12-21
Published Online: 2016-11-30
Published in Print: 2011-1-1

© 2016 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Application of Fenton’s Reaction for Food-processing Wastewater Treatment
  2. Degradation of Acid Orange 7 Solution by Air-liquid Gliding Arc Discharge in Combination with TiO2 Catalyst
  3. Comparing the Formation of Bromate and Bromoform Due to Ozonation and UV-TiO2 Oxidation in Seawater
  4. Degradation of Ibuprofen Sodium Salt in a Hybrid Photolysis – Membrane Distillation System Utilizing Germicidal UVC Lamp
  5. Significance of TiO2 Photocatalysis for Green Chemistry
  6. Electrochemical Treatment of Segregated Effluents from the D-Stage in ECF Kraft Cellulose Bleaching
  7. A Study on the Removal of Natural Organic Matter and Disinfection Byproducts Formation Potential from Groundwater Using Fenton’s Process
  8. Investigation of Electric Discharge Sound in Atmospheric Pressure Plasma Using Optical Wave Microphone
  9. Formal Bimolecular Kinetic Model for the Ozonation of Ciprofloxacin in the Liquid Phase
  10. Removing Estrogenic Steroids from Waters: The Role of Reducing Hydrated Electron Reactions
  11. Photocatalytic Inactivation of Escherichia coli with LbL Fabricated Immobilized TiO2 Thin Films
  12. Solution Combustion Synthesis of BiVO4 Nanoparticles: Effect of Combustion Precursors on the Photocatalytic Activity
  13. Antibacterial Activity Inhibition after the Degradation of Flumequine by UV/H2O2
  14. Photocatalytic Degradation of Acid Red G by Bismuth Titanate in Three-phase Fluidized Bed Photoreactor
  15. Catalytic Epoxidation of Allyl Alcohol with Hydrogen Peroxide under Autogenic Pressure over Ti-MWW Catalyst
  16. Recent Progress of Nano-Seconds Pulsed Discharge and its Applications
  17. Ozonation of Municipal Secondary Effluent; Removal of Hazardous Micropollutants and Related Changes of Organic Matter Composition
  18. Effect of Post-annealing on the Photocatalytic Activity of Hydrothermally Synthesised Titania Nanotubes
  19. Low Temperature Preparation of Porous Crystalline TiO2 Films Using a Combination of Electrochemical and Electrophoretical Deposition
  20. Decomposition of Trichloroethylene with Plasma-catalysis: A review
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaots-2011-0118/html
Scroll to top button