Home Photocatalytic Inactivation of Escherichia coli with LbL Fabricated Immobilized TiO2 Thin Films
Article
Licensed
Unlicensed Requires Authentication

Photocatalytic Inactivation of Escherichia coli with LbL Fabricated Immobilized TiO2 Thin Films

  • Sharad Sontakke , Jayant Modak EMAIL logo and Giridhar Madras
Published/Copyright: November 30, 2016
Become an author with De Gruyter Brill

Abstract

Photocatalysis using semiconductor catalyst such as TiO2, in presence of UV light, is a promising technique for the inactivation of various microorganisms present in water. In the current study, the photocatalytic inactivation of Escherichia coli bacteria was studied with commercial Degussa Aeroxide TiO2 P25 (Aeroxide) and combustion synthesized TiO2 (CS TiO2) catalysts immobilized on glass slides in presence of UV irradiation. Thin films of the catalyst and polyelectrolytes, poly(allyl amine hydrochloride) and poly(styrene sulfonate sodium salt), were deposited on glass slides by layer by layer (LbL) deposition method and characterized by SEMand AFMimaging. The effect of various parameters, namely, catalyst concentration, surface area and number of bilayers, on inactivation was studied. Maximum inactivation of 8-log reduction in the viable count was observed with 1.227 mg/cm2 of catalyst loaded slides. With this loading, complete inactivation was observed within 90 min and 75 min of irradiation, for Aeroxide and CS TiO2, respectively. Further increase in the catalyst concentration or increasing number of bilayers had no significant effect on inactivation. The effect of surface area on the inactivation was studied by increasing the number of slides and the inactivation was observed to increase with increasing surface area. It was also observed that the immobilized catalyst slides can be used for several cycles leading to an economic process. The study shows potential application of TiO2, for the inactivation of bacteria, in its fixed form by a simple immobilization technique.

Received: 2010-9-26
Revised: 2010-11-15
Accepted: 0201-12-4
Published Online: 2016-11-30
Published in Print: 2011-1-1

© 2016 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Application of Fenton’s Reaction for Food-processing Wastewater Treatment
  2. Degradation of Acid Orange 7 Solution by Air-liquid Gliding Arc Discharge in Combination with TiO2 Catalyst
  3. Comparing the Formation of Bromate and Bromoform Due to Ozonation and UV-TiO2 Oxidation in Seawater
  4. Degradation of Ibuprofen Sodium Salt in a Hybrid Photolysis – Membrane Distillation System Utilizing Germicidal UVC Lamp
  5. Significance of TiO2 Photocatalysis for Green Chemistry
  6. Electrochemical Treatment of Segregated Effluents from the D-Stage in ECF Kraft Cellulose Bleaching
  7. A Study on the Removal of Natural Organic Matter and Disinfection Byproducts Formation Potential from Groundwater Using Fenton’s Process
  8. Investigation of Electric Discharge Sound in Atmospheric Pressure Plasma Using Optical Wave Microphone
  9. Formal Bimolecular Kinetic Model for the Ozonation of Ciprofloxacin in the Liquid Phase
  10. Removing Estrogenic Steroids from Waters: The Role of Reducing Hydrated Electron Reactions
  11. Photocatalytic Inactivation of Escherichia coli with LbL Fabricated Immobilized TiO2 Thin Films
  12. Solution Combustion Synthesis of BiVO4 Nanoparticles: Effect of Combustion Precursors on the Photocatalytic Activity
  13. Antibacterial Activity Inhibition after the Degradation of Flumequine by UV/H2O2
  14. Photocatalytic Degradation of Acid Red G by Bismuth Titanate in Three-phase Fluidized Bed Photoreactor
  15. Catalytic Epoxidation of Allyl Alcohol with Hydrogen Peroxide under Autogenic Pressure over Ti-MWW Catalyst
  16. Recent Progress of Nano-Seconds Pulsed Discharge and its Applications
  17. Ozonation of Municipal Secondary Effluent; Removal of Hazardous Micropollutants and Related Changes of Organic Matter Composition
  18. Effect of Post-annealing on the Photocatalytic Activity of Hydrothermally Synthesised Titania Nanotubes
  19. Low Temperature Preparation of Porous Crystalline TiO2 Films Using a Combination of Electrochemical and Electrophoretical Deposition
  20. Decomposition of Trichloroethylene with Plasma-catalysis: A review
Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaots-2011-0111/html
Scroll to top button