Startseite On the geometry of semi-slant submanifolds of a conformal Kenmotsu manifold
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the geometry of semi-slant submanifolds of a conformal Kenmotsu manifold

  • M. S. Siddesha EMAIL logo , C. S. Bagewadi und M. Ramesha
Veröffentlicht/Copyright: 26. Juni 2024

Abstract

The object of this paper is to conduct an in-depth examination of semi-slant submanifolds within the framework of a conformal Kenmotsu manifolds. Our investigation is centered around identifying and understanding the conditions that ensure the integrability of both invariant and slant distributions, which play a pivotal role in defining semi-slant submanifolds. Additionally, we prove some interesting results for semi-slant submanifolds with parallel canonical structures.

MSC 2020: 53C25; 53C40; 53D15

Acknowledgements

The authors are thankful to the referee for his/her valuable suggestions towards the improvement of this paper.

References

[1] R. Abdi and E. Abedi, Invariant and anti-invariant submanifolds of a conformal Kenmotsu manifold, Azerb. J. Math. 5 (2015), no. 1, 54–63. Suche in Google Scholar

[2] R. Abdi and E. Abedi, CR-hypersurfaces of a conformal Kenmotsu manifold satisfying certain shape operator conditions, Period. Math. Hungar. 73 (2016), no. 1, 83–92. 10.1007/s10998-016-0131-6Suche in Google Scholar

[3] R. Abdi and E. Abedi, On the Ricci tensor of submanifolds in conformal Kenmotsu manifolds, Kyushu J. Math. 71 (2017), no. 2, 257–269. 10.2206/kyushujm.71.257Suche in Google Scholar

[4] E. Abedi and R. Bahrami Ziabari, Slant submanifolds of a conformal Sasakian manifold, Acta Univ. Apulensis Math. Inform. (2014), no. 40, 35–49. 10.17114/j.aua.2014.40.04Suche in Google Scholar

[5] M. Atçeken, Semi-slant submanifolds of an almost paracontact metric manifold, Canad. Math. Bull. 53 (2010), no. 2, 206–217. 10.4153/CMB-2010-003-0Suche in Google Scholar

[6] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976. 10.1007/BFb0079307Suche in Google Scholar

[7] J. L. Cabrerizo, A. Carriazo, L. M. Fernández and M. Fernández, Semi-slant submanifolds of a Sasakian manifold, Geom. Dedicata 78 (1999), no. 2, 183–199. 10.1023/A:1005241320631Suche in Google Scholar

[8] J. L. Cabrerizo, A. Carriazo, L. M. Fernández and M. Fernández, Slant submanifolds in Sasakian manifolds, Glasg. Math. J. 42 (2000), no. 1, 125–138. 10.1017/S0017089500010156Suche in Google Scholar

[9] B. Y. Chen, Slant immersions, Bull. Aust. Math. Soc. 41 (1990), 135–147. 10.1017/S0004972700017925Suche in Google Scholar

[10] R. S. Gupta, S. M. Khursheed Haider and M. H. Shahid, Slant submanifolds of a Kenmotsu manifold, Rad. Mat. 12 (2004), no. 2, 205–214. Suche in Google Scholar

[11] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972), 93–103. 10.2748/tmj/1178241594Suche in Google Scholar

[12] V. A. Khan and M. A. Khan, Semi-slant submanifolds of trans-Sasakian manifolds, Sarajevo J. Math. 2 (2006), no. 1, 83–93. 10.5644/SJM.02.1.09Suche in Google Scholar

[13] V. A. Khan, M. A. Khan and K. A. Khan, Slant and semi-slant submanifolds of a Kenmotsu manifold, Math. Slovaca 57 (2007), no. 5, 483–494. 10.2478/s12175-007-0040-5Suche in Google Scholar

[14] P. Libermann, Sur les structures presque complexes et autres structures infinitésimales régulières, Bull. Soc. Math. France 83 (1955), 195–224. 10.24033/bsmf.1460Suche in Google Scholar

[15] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Sci. Math. Roumanie (N. S.) 39 (1996), 183–198. Suche in Google Scholar

[16] S. Maeda, Y. Ohnita and S. Udagawa, On slant immersions into Kähler manifolds, Kodai Math. J. 16 (1993), no. 2, 205–219. 10.2996/kmj/1138039784Suche in Google Scholar

[17] N. Papaghiuc, Semi-slant submanifolds of a Kaehlerian manifold, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. Mat. (N. S.) 40 (1994), no. 1, 55–61. Suche in Google Scholar

[18] M. S. Siddesha and C. S. Bagewadi, On slant submanifolds of ( k , μ ) -contact manifolds, Differ. Geom. Dyn. Syst. 18 (2016), 123–131. Suche in Google Scholar

[19] M. S. Siddesha and C. S. Bagewadi, Slant submanifolds of a conformal ( k , μ ) -contact, Internat. J. Math. Combin. 3 (2017), 39–50. Suche in Google Scholar

[20] M. S. Siddesha and C. S. Bagewadi, Semi-slant submanifolds of ( k , μ ) -contact manifold, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67 (2018), no. 2, 116–125. 10.1501/Commua1_0000000866Suche in Google Scholar

[21] M. S. Siddesha and C. S. Bagewadi, Submanifolds of a conformal ( k , μ ) -contact manifold, Proceedings of the International Conference “Differential Geometry, Dynamical Systems”, BSG Proc. 28, Geometry Balkan Press, Bucharest (2021), 88–97. Suche in Google Scholar

[22] M. S. Siddesha, C. S. Bagewadi and D. Nirmala, Totally umbilical proper slant submanifolds of para-Kenmotsu manifold, Cubo 21 (2019), no. 2, 41–49. 10.4067/S0719-06462019000200041Suche in Google Scholar

[23] H. M. Taştan and M. M. Tripathi, Semi-slant submanifolds of a locally conformal Kähler manifold, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N. S.) 62 (2016), no. 2, 337–347. Suche in Google Scholar

[24] I. Vaisman, A geometry condition for locally conformal Kaehler manifolds to be Kaehler, Geom. Dedicata 10 (1981), no. 1–4, 129–134. 10.1007/BF01447416Suche in Google Scholar

[25] K. Yano and M. Kon, Structures on Manifolds, Ser. Pure Math. 3, World Scientific, Singapore, 1984. 10.1142/0067Suche in Google Scholar

Received: 2023-12-02
Revised: 2024-06-01
Accepted: 2024-06-01
Published Online: 2024-06-26
Published in Print: 2025-06-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2023-0150/html
Button zum nach oben scrollen