Startseite Infinitely many solutions for a p(x)-triharmonic equation with Navier boundary conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Infinitely many solutions for a p(x)-triharmonic equation with Navier boundary conditions

  • Adnane Belakhdar ORCID logo EMAIL logo , Hassan Belaouidel , Mohammed Filali und Najib Tsouli
Veröffentlicht/Copyright: 24. April 2024

Abstract

In this work, we will study the existence of an infinity of solutions of a Navier problem governed by the p ( x ) -triharmonic operator using the theory of Ljusternick–Shrilemann and the theory of the variable exponent Sobolev spaces.

MSC 2020: 35D30; 35J55; 35J65

Acknowledgements

Our sincere thanks to Belaouidel, Filali, and Tsouli for their support and insights, and to the anonymous reviewers for their constructive feedback.

References

[1] M. Abdelwahed and N. Chorfi, Spectral discretization of the time-dependent Navier–Stokes problem with mixed boundary conditions, Adv. Nonlinear Anal. 11 (2022), no. 1, 1447–1465. 10.1515/anona-2022-0253Suche in Google Scholar

[2] S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), no. 1, 19–36. 10.1007/s11565-006-0002-9Suche in Google Scholar

[3] S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005), no. 3, 515–545. 10.1016/S0362-546X(04)00393-1Suche in Google Scholar

[4] A. Ayoujil and A. R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal. 71 (2009), no. 10, 4916–4926. 10.1016/j.na.2009.03.074Suche in Google Scholar

[5] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Heidelberg, 2011. 10.1007/978-3-642-18363-8Suche in Google Scholar

[6] M. Dilmi and S. Otmani, Existence and asymptotic stability for generalized elasticity equation with variable exponent, Opuscula Math. 43 (2023), no. 3, 409–428. 10.7494/OpMath.2023.43.3.409Suche in Google Scholar

[7] D. E. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), no. 3, 267–293. 10.4064/sm-143-3-267-293Suche in Google Scholar

[8] A. El Amrouss, F. Moradi and A. Ourraoui, Neumann problem in divergence form modeled on the p ( x ) -Laplace equation, Bol. Soc. Parana. Mat. (3) 32 (2014), no. 2, 109–117. 10.5269/bspm.v32i2.20329Suche in Google Scholar

[9] A. R. El Amrouss and A. Ourraoui, Existence of solutions for a boundary problem involving p ( x ) -biharmonic operator, Bol. Soc. Parana. Mat. (3) 31 (2013), no. 1, 179–192. 10.5269/bspm.v31i1.15148Suche in Google Scholar

[10] A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004), no. 1, 30–42. 10.1016/j.jmaa.2004.05.041Suche in Google Scholar

[11] X. Fan and X. Han, Existence and multiplicity of solutions for p ( x ) -Laplacian equations in 𝐑 N , Nonlinear Anal. 59 (2004), no. 1–2, 173–188. 10.1016/S0362-546X(04)00254-8Suche in Google Scholar

[12] X. Fan and D. Zhao, On the spaces L p ( x ) ( Ω ) and W m , p ( x ) ( Ω ) , J. Math. Anal. Appl. 263 (2001), no. 2, 424–446. 10.1006/jmaa.2000.7617Suche in Google Scholar

[13] M. K. Hamdani, N. T. Chung and D. D. Repovš, New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions, Adv. Nonlinear Anal. 10 (2021), no. 1, 1117–1131. 10.1515/anona-2020-0172Suche in Google Scholar

[14] O. Kováčik and J. Rákosík, On spaces L p ( x ) and W 1 , p ( x ) , Czechoslovak Math. J. 41 (1991), 592–618. 10.21136/CMJ.1991.102493Suche in Google Scholar

[15] G.-D. Li, Y.-Y. Li and C.-L. Tang, Infinitely many radial and non-radial sign-changing solutions for Schrödinger equations, Adv. Nonlinear Anal. 11 (2022), no. 1, 907–920. 10.1515/anona-2021-0221Suche in Google Scholar

[16] V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents, Monogr. Res. Notes Math., CRC Press, Boca Raton, 2015. Suche in Google Scholar

[17] B. Rahal, Existence results of infinitely many solutions for p ( x ) -Kirchhoff type triharmonic operator with Navier boundary conditions, J. Math. Anal. Appl. 478 (2019), no. 2, 1133–1146. 10.1016/j.jmaa.2019.06.006Suche in Google Scholar

[18] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000. 10.1007/BFb0104029Suche in Google Scholar

[19] S. Shokooh, On a nonlinear differential equation involving the p ( x ) -triharmonic operator, J. Nonlinear Funct. Anal. 2020 (2020), Article ID 19. 10.23952/jnfa.2020.19Suche in Google Scholar

[20] R. Stegliński, Notes on applications of the dual fountain theorem to local and nonlocal elliptic equations with variable exponent, Opuscula Math. 42 (2022), no. 5, 751–761. 10.7494/OpMath.2022.42.5.751Suche in Google Scholar

[21] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations, 2nd ed., Ergeb. Math. Grenzgeb. (3) 34, Springer, Berlin, 1996. Suche in Google Scholar

[22] A. Szulkin, Ljusternik–Schnirelmann theory on 𝒞 1 -manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), no. 2, 119–139. 10.1016/s0294-1449(16)30348-1Suche in Google Scholar

[23] A. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue–Sobolev spaces, Nonlinear Anal. 69 (2008), no. 10, 3629–3636. 10.1016/j.na.2007.10.001Suche in Google Scholar

[24] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv. 9 (1987), 33–66. 10.1070/IM1987v029n01ABEH000958Suche in Google Scholar

[25] V. V. Zhikov, On some variational problems, Russ. J. Math. Phys. 5 (1997), no. 1, 105–116. Suche in Google Scholar

Received: 2023-07-08
Revised: 2024-03-15
Accepted: 2024-03-15
Published Online: 2024-04-24
Published in Print: 2025-06-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2023-0055/html
Button zum nach oben scrollen