Home Weighted integrability of Laguerre–Bessel transforms
Article
Licensed
Unlicensed Requires Authentication

Weighted integrability of Laguerre–Bessel transforms

  • Larbi Rakhimi ORCID logo EMAIL logo , Radouan Daher and Mohamed El Hamma
Published/Copyright: April 24, 2024

Abstract

The problem of weighted integrability of the Laguerre–Bessel transform in terms of the moduli of smoothness related to generalized translations is considered. Sufficient conditions are given to solve this problem. These results generalize a famous Titchmarsh’s theorem, due to [L. Rakhimi and R. Daher, An analog of Titchmarsh’s theorem for the Laguerre–Bessel transform, Arab. J. Math. Sci. 2023, 10.1108/AJMS-04-2022-0101] in the Laguerre–Bessel hypergroup. Also some results connected with the integrability of Laguerre–Bessel transforms are given.

References

[1] P. L. Butzer, H. Dyckhoff, E. Görlich and R. L. Stens, Best trigonometric approximation, fractional order derivatives and Lipschitz classes, Canad. J. Math. 29 (1977), no. 4, 781–793. 10.4153/CJM-1977-081-6Search in Google Scholar

[2] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhauser, Basel, 1971. 10.1007/978-3-0348-7448-9Search in Google Scholar

[3] L. Gogoladze and R. Meskhia, On the absolute convergence of trigonometric Fourier series, Proc. A. Razmadze Math. Inst. 141 (2006), 29–40. Search in Google Scholar

[4] E. Jebbari, M. Sifi and F. Soltani, Laguerre–Bessel wavelet transform, Glob. J. Pure Appl. Math. 1 (2005), no. 1, 13–26. Search in Google Scholar

[5] H. Kortas and M. Sifi, Lévy–Khintchine formula and dual convolution semigroups associated with Laguerre and Bessel functions, Potential Anal. 15 (2001), 43–58. 10.1023/A:1011267200317Search in Google Scholar

[6] S. A. Krayukhin and S. S. Volosivets, Functions of bounded p-variation and weighted integrability of Fourier transforms, Acta Math. Hungar. 159 (2019), no. 2, 374–399. 10.1007/s10474-019-00995-6Search in Google Scholar

[7] F. Móricz, Sufficient conditions for the Lebesgue integrability of Fourier transforms, Anal. Math. 36 (2010), no. 2, 121–129. 10.1007/s10476-010-0203-4Search in Google Scholar

[8] S. Negzaoui and S. Rebhi, On the concentration of a function and its Laguerre–Bessel transform, Math. Inequal. Appl. 22 (2019), no. 3, 825–836. 10.7153/mia-2019-22-57Search in Google Scholar

[9] L. Rakhimi and R. Daher, Modulus of smoothness and K-functionals constructed by generalized Laguerre–Bessel operator, Tatra Mt. Math. Publ. 81 (2022), 107–116. 10.2478/tmmp-2022-0008Search in Google Scholar

[10] L. Rakhimi and R. Daher, An analog of Titchmarsh’s theorem for the Laguerre–Bessel transform, Arab. J. Math. Sci. (2023), 10.1108/AJMS-04-2022-0101. 10.1108/AJMS-04-2022-0101Search in Google Scholar

[11] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937. Search in Google Scholar

[12] S. Volosivets, Weighted integrability of Fourier–Dunkl transforms and generalized Lipschitz classes, Anal. Math. Phys. 12 (2022), no. 5, Paper No. 115. 10.1007/s13324-022-00728-zSearch in Google Scholar

[13] S. S. Volosivets, Weighted integrability of Fourier–Jacobi transforms, Integral Transforms Spec. Funct. 34 (2023), no. 6, 431–443. 10.1080/10652469.2022.2140801Search in Google Scholar

Received: 2023-12-19
Revised: 2024-03-19
Accepted: 2024-03-20
Published Online: 2024-04-24
Published in Print: 2025-06-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2023-0162/html
Scroll to top button