Startseite Trigonometric Hermite interpolation method for Fredholm linear integral equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Trigonometric Hermite interpolation method for Fredholm linear integral equations

  • Mohamed Ajeddar EMAIL logo und Abdellah Lamnii ORCID logo
Veröffentlicht/Copyright: 10. Januar 2023

Abstract

This paper presents a new trigonometric composite Hermite interpolation method for solving Fredholm linear integral equations. This operator approximates locally both the function and its derivative, which is known on the subdivision nodes. Then we derive a class of quadrature rules with endpoint corrections based on integrating the composite Hermite interpolant. We also provide error estimation and numerical examples to illustrate that this new operator can provide highly accurate results.

MSC 2010: 41A15; 42A15; 65D07

References

[1] M. Ajeddar and A. Lamnii, Smooth reverse subdivision of uniform algebraic hyperbolic B-splines and wavelets, Int. J. Wavelets Multiresolut. Inf. Process. 19 (2021), no. 5, Paper No. 2150018. 10.1142/S0219691321500181Suche in Google Scholar

[2] C. Allouch and P. Sablonnière, Iteration methods for Fredholm integral equations of the second kind based on spline quasi-interpolants, Math. Comput. Simulation 99 (2014), 19–27. 10.1016/j.matcom.2013.04.014Suche in Google Scholar

[3] C. Allouch, P. Sablonnière and D. Sbibih, Solving Fredholm integral equations by approximating kernels by spline quasi-interpolants, Numer. Algorithms 56 (2011), no. 3, 437–453. 10.1007/s11075-010-9396-7Suche in Google Scholar

[4] C. Allouch, D. Sbibih and M. Tahrichi, Superconvergent Nyström and degenerate kernel methods for Hammerstein integral equations, J. Comput. Appl. Math. 258 (2014), 30–41. 10.1016/j.cam.2013.08.025Suche in Google Scholar

[5] C. Allouch, D. Sbibih and M. Tahrichi, Superconvergent product integration method for Hammerstein integral equations, J. Integral Equations Appl. 31 (2019), no. 1, 1–28. 10.1216/JIE-2019-31-1-1Suche in Google Scholar

[6] K. Atkinson and G. Chandler, The collocation method for solving the radiosity equation for unoccluded surfaces, J. Integral Equations Appl. 10 (1998), no. 3, 253–290. 10.1216/jiea/1181074231Suche in Google Scholar

[7] D. Barrera, S. Eddargani, A. Lamnii and M. Oraiche, On nonpolynomial monotonicity-preserving C 1 spline interpolation, Comput. Math. Methods 3 (2021), no. 4, Paper No. e1160. 10.1002/cmm4.1160Suche in Google Scholar

[8] D. Barrera, F. Elmokhtari and D. Sbibih, Two methods based on bivariate spline quasi-interpolants for solving Fredholm integral equations, Appl. Numer. Math. 127 (2018), 78–94. 10.1016/j.apnum.2017.12.016Suche in Google Scholar

[9] A. Bellour, D. Sbibih and A. Zidna, Two cubic spline methods for solving Fredholm integral equations, Appl. Math. Comput. 276 (2016), 1–11. 10.1016/j.amc.2015.11.055Suche in Google Scholar

[10] A. H. Borzabadi and O. S. Fard, A numerical scheme for a class of nonlinear Fredholm integral equations of the second kind, J. Comput. Appl. Math. 232 (2009), no. 2, 449–454. 10.1016/j.cam.2009.06.038Suche in Google Scholar

[11] C. Conti and R. Morandi, Piecewise C 1 -shape-preserving Hermite interpolation, Computing 56 (1996), no. 4, 323–341. 10.1007/BF02253459Suche in Google Scholar

[12] H. B. Curry and I. J. Schoenberg, On spline distributions and their limits-the polya distribution functions, Amer. Math. Soc. 53 (1947), Paper No. 1114. Suche in Google Scholar

[13] S. Eddargani, A. Lamnii and M. Lamnii, On algebraic trigonometric integro splines, ZAMM Z. Angew. Math. Mech. 100 (2020), no. 2, Article ID e201900262. 10.1002/zamm.201900262Suche in Google Scholar

[14] S. Eddargani, A. Lamnii, M. Lamnii, D. Sbibih and A. Zidna, Algebraic hyperbolic spline quasi-interpolants and applications, J. Comput. Appl. Math. 347 (2019), 196–209. 10.1016/j.cam.2018.08.018Suche in Google Scholar

[15] S. Kumar and I. H. Sloan, A new collocation-type method for Hammerstein integral equations, Math. Comp. 48 (1987), no. 178, 585–593. 10.1090/S0025-5718-1987-0878692-4Suche in Google Scholar

[16] A. Lahtinen, Shape preserving interpolation by quadratic splines, J. Comput. Appl. Math. 29 (1990), no. 1, 15–24. 10.1016/0377-0427(90)90191-2Suche in Google Scholar

[17] A. Lamnii, M. Lamnii and F. Oumellal, Computation of Hermite interpolation in terms of B-spline basis using polar forms, Math. Comput. Simulation 134 (2017), 17–27. 10.1016/j.matcom.2016.09.009Suche in Google Scholar

[18] C. Manni, C 1 comonotone Hermite interpolation via parametric cubics, J. Comput. Appl. Math. 69 (1996), no. 1, 143–157. 10.1016/0377-0427(94)00026-3Suche in Google Scholar

[19] G. Mastroianni, G. V. Milovanović and D. Occorsio, Nyström method for Fredholm integral equations of the second kind in two variables on a triangle, Appl. Math. Comput. 219 (2013), no. 14, 7653–7662. 10.1016/j.amc.2013.01.054Suche in Google Scholar

[20] S. Micula and G. Micula, On the superconvergent spline collocation methods for the Fredholm integral equations on surfaces, Math. Balkanica (N. S.) 19 (2005), no. 1–2, 155–166. Suche in Google Scholar

[21] M. S. Mummy, Hermite interpolation with B-splines, Comput. Aided Geom. Design 6 (1989), no. 2, 177–179. 10.1016/0167-8396(89)90021-6Suche in Google Scholar

[22] P. Sablonnière, D. Sbibih and M. Tahrichi, High-order quadrature rules based on spline quasi-interpolants and application to integral equations, Appl. Numer. Math. 62 (2012), no. 5, 507–520. 10.1016/j.apnum.2011.12.004Suche in Google Scholar

[23] I. J. Schoenberg and A. Sharma, Cardinal interpolation and spline functions. V. The B-splines for cardinal Hermite interpolation, Linear Algebra Appl. 7 (1973), 1–42. 10.1016/0024-3795(73)90034-7Suche in Google Scholar

[24] L. L. Schumaker, On shape preserving quadratic spline interpolation, SIAM J. Numer. Anal. 20 (1983), no. 4, 854–864. 10.1137/0720057Suche in Google Scholar

Received: 2021-01-29
Accepted: 2021-05-22
Published Online: 2023-01-10
Published in Print: 2023-12-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2022-2002/html?lang=de
Button zum nach oben scrollen