Startseite Generalized multivariate Fink-type identity and some related results on time scales with applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generalized multivariate Fink-type identity and some related results on time scales with applications

  • Sabir Hussain und Muhammad Amer Latif ORCID logo EMAIL logo
Veröffentlicht/Copyright: 26. November 2019

Abstract

Generalized Fink-type identity for multi-variables to an arbitrary time scales is obtained, giving some multi-variate Ostrowski, Iyengar and Grüss-type inequalities unifying the corresponding continuous and discrete version. Some new applications to generalized polynomials are also obtained.

MSC 2010: 26A15; 26A42; 26A36

References

[1] G. A. Anastassiou, Multivariate Fink type identity and multivariate Ostrowski, comparison of means and Grüss type inequalities, Math. Comput. Modelling 46 (2007), no. 3–4, 351–374. 10.1016/j.mcm.2006.11.008Suche in Google Scholar

[2] M. Bohner and G. S. Guseinov, Multiple integration on time scales, Dynam. Systems Appl. 14 (2005), no. 3–4, 579–606. 10.1007/978-3-319-47620-9_7Suche in Google Scholar

[3] M. Bohner and A. Peterson, Dynamic Equations on Time Scales. An Introduction with Applications, Birkhäuser, Boston, 2001. 10.1007/978-1-4612-0201-1Suche in Google Scholar

[4] S. S. Dragomir and A. Sofo, Trapezoidal type inequalities for n-time differentiable functions, J. Appl. Math. Comput. 28 (2008), no. 1–2, 367–379. 10.1007/s12190-008-0111-ySuche in Google Scholar

[5] A. M. Fink, Bounds on the deviation of a function from its averages, Czechoslovak Math. J. 42(117) (1992), no. 2, 289–310. 10.21136/CMJ.1992.128336Suche in Google Scholar

[6] G. Grüss, Über das Maximum des absoluten Betrages von 1b-aabf(x)g(x)𝑑x-1(b-a)2abf(x)𝑑xabg(x)𝑑x, Math. Z. 39 (1935), no. 1, 215–226. 10.1007/BF01201355Suche in Google Scholar

[7] S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph. D. thesis, Universitaat Würzburg, Würzburg, 1988. Suche in Google Scholar

[8] K. S. K. Iyengar, Note on an inequality, Math. Student 6 (1938), 75–76. Suche in Google Scholar

[9] A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv. 10 (1937), no. 1, 226–227. 10.1007/BF01214290Suche in Google Scholar

[10] H. M. Srivastava, K.-L. Tseng, S.-J. Tseng and J.-C. Lo, Some weighted Opial-type inequalities on time scales, Taiwanese J. Math. 14 (2010), no. 1, 107–122. 10.11650/twjm/1500405730Suche in Google Scholar

[11] H. M. Srivastava, K.-L. Tseng, S.-J. Tseng and J.-C. Lo, Some generalizations of Maroni’s inequality on time scales, Math. Inequal. Appl. 14 (2011), no. 2, 469–480. 10.7153/mia-14-39Suche in Google Scholar

Received: 2017-11-30
Accepted: 2019-03-13
Published Online: 2019-11-26
Published in Print: 2019-12-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2019-0020/html
Button zum nach oben scrollen