Home Traveling wave solutions and conservation laws of a generalized Kudryashov–Sinelshchikov equation
Article
Licensed
Unlicensed Requires Authentication

Traveling wave solutions and conservation laws of a generalized Kudryashov–Sinelshchikov equation

  • Ben Muatjetjeja EMAIL logo , Abdullahi Rashid Adem and Sivenathi Oscar Mbusi
Published/Copyright: November 22, 2019

Abstract

Kudryashov and Sinelshchikov proposed a nonlinear evolution equation that models the pressure waves in a mixture of liquid and gas bubbles by taking into account the viscosity of the liquid and the heat transfer. Conservation laws and exact solutions are computed for this underlying equation. In the analysis of this particular equation, two approaches are employed, namely, the multiplier method and Kudryashov method.

MSC 2010: 35G20; 35C05; 35C07

References

[1] B. Bira and T. R. Sekhar, Exact solutions to drift-flux multiphase flow models through Lie group symmetry analysis, Appl. Math. Mech. (English Ed.) 36 (2015), no. 8, 1105–1112. 10.1007/s10483-015-1968-7Search in Google Scholar

[2] J. C. Camacho, M. Rosa, M. L. Gandarias and M. S. Bruzón, Classical symmetries, travelling wave solutions and conservation laws of a generalized Fornberg–Whitham equation, J. Comput. Appl. Math. 318 (2017), 149–155. 10.1016/j.cam.2016.11.017Search in Google Scholar

[3] R. de la Rosa, M. L. Gandarias and M. S. Bruzón, Equivalence transformations and conservation laws for a generalized variable-coefficient Gardner equation, Commun. Nonlinear Sci. Numer. Simul. 40 (2016), 71–79. 10.1016/j.cnsns.2016.04.009Search in Google Scholar

[4] Z. T. Fu, S. D. Liu, S. K. Liu and Q. Zhao, New exact solutions to KdV equations with variable coefficients or forcing, Appl. Math. Mech. 25 (2004), no. 1, 67–73. Search in Google Scholar

[5] M. L. Gandarias and M. S. Bruzón, Some conservation laws for a forced KdV equation, Nonlinear Anal. Real World Appl. 13 (2012), no. 6, 2692–2700. 10.1016/j.nonrwa.2012.03.013Search in Google Scholar

[6] M. L. Gandarias and M. S. Bruzón, Conservation laws for a Boussinesq equation, Appl. Math. Nonlinear Sci. 2 (2017), no. 2, 465–472. 10.21042/AMNS.2017.2.00037Search in Google Scholar

[7] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. (5) 39 (1895), no. 240, 422–443. 10.1080/14786449508620739Search in Google Scholar

[8] N. A. Kudryashov, Exact soliton solutions of a generalized evolution equation of wave dynamics, Prikl. Mat. Mekh. 52 (1988), no. 3, 465–470. 10.1016/0021-8928(88)90090-1Search in Google Scholar

[9] N. A. Kudryashov, On types of nonlinear nonintegrable equations with exact solutions, Phys. Lett. A 155 (1991), no. 4–5, 269–275. 10.1016/0375-9601(91)90481-MSearch in Google Scholar

[10] N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 6, 2248–2253. 10.1016/j.cnsns.2011.10.016Search in Google Scholar

[11] N. A. Kudryashov and D. I. Sinelshchikov, Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer, Phys. Lett. A 374 (2010), no. 19, 2011–2016. 10.1016/j.physleta.2010.02.067Search in Google Scholar

[12] P. N. Ryabov, Exact solutions of the Kudryashov–Sinelshchikov equation, Appl. Math. Comput. 217 (2010), no. 7, 3585–3590. 10.1016/j.amc.2010.09.003Search in Google Scholar

[13] R. Tracinà, M. S. Bruzón and M. L. Gandarias, On the nonlinear self-adjointness of a class of fourth-order evolution equations, Appl. Math. Comput. 275 (2016), 299–304. 10.1016/j.amc.2015.11.079Search in Google Scholar

[14] J.-M. Tu, S.-F. Tian, M.-J. Xu and T.-T. Zhang, On Lie symmetries, optimal systems and explicit solutions to the Kudryashov–Sinelshchikov equation, Appl. Math. Comput. 275 (2016), 345–352. 10.1016/j.amc.2015.11.072Search in Google Scholar

[15] A.-M. Wazwaz, New solitary wave solutions to the Kuramoto–Sivashinsky and the Kawahara equations, Appl. Math. Comput. 182 (2006), no. 2, 1642–1650. 10.1016/j.amc.2006.06.002Search in Google Scholar

[16] A.-M. Wazwaz, The extended tanh method for new solitons solutions for many forms ofh e fifth-order KdV equations, Appl. Math. Comput. 184 (2007), no. 2, 1002–1014. 10.1016/j.amc.2006.07.002Search in Google Scholar

[17] A.-M. Wazwaz, The extended tanh method for the Zakharov–Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms, Commun. Nonlinear Sci. Numer. Simul. 13 (2008), no. 6, 1039–1047. 10.1016/j.cnsns.2006.10.007Search in Google Scholar

[18] A. M. Wazwaz, Multi-front waves for extended form of modified Kadomtsev–Petviashvili equation, Appl. Math. Mech. (English Ed.) 32 (2011), no. 7, 875–880. 10.1007/s10483-011-1466-6Search in Google Scholar

Received: 2018-02-16
Accepted: 2019-08-29
Published Online: 2019-11-22
Published in Print: 2019-12-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2019-0022/html
Scroll to top button