Home Analytical and asymptotic evaluations of Dawson’s integral and related functions in mathematical physics
Article
Licensed
Unlicensed Requires Authentication

Analytical and asymptotic evaluations of Dawson’s integral and related functions in mathematical physics

  • Victor Nijimbere EMAIL logo
Published/Copyright: November 20, 2019

Abstract

Dawson’s integral and related functions in mathematical physics that include the complex error function (Faddeeva’s integral), Fried–Conte (plasma dispersion) function, Jackson function, Fresnel function and Gordeyev’s integral are analytically evaluated in terms of the confluent hypergeometric function. And hence, the asymptotic expansions of these functions on the complex plane are derived by using the asymptotic expansion of the confluent hypergeometric function.

MSC 2010: 26A36; 33C15; 30E15

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Natl. Bureau Standards Appl. Math. Ser. 55, U.S. Government Printing Office, Washington, 1964. 10.1115/1.3625776Search in Google Scholar

[2] S. M. Abrarov and B. M. Quine, Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation, Appl. Math. Comput. 218 (2011), no. 5, 1894–1902. 10.1016/j.amc.2011.06.072Search in Google Scholar

[3] S. M. Abrarov and B. M. Quine, Accurate approximations for the complex error function with small imaginary argument, J. Math. Res. 7 (2015), 44–53. 10.5539/jmr.v7n1p44Search in Google Scholar

[4] W. Baumjohann and R. A. Treumann, Basic Space Plasma Physics, Imperial College Press, Lodon, 1997. 10.1142/p020Search in Google Scholar

[5] H. Borchert, D. V. Talapin, N. Gaponik, C. McGniley, S. Adam, A. Lobo, T. Möller and H. Weller, Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS, J. Phys. Chem. B 107 (2003), 9662–9668. 10.1021/jp0352884Search in Google Scholar

[6] I. Charpentier and J. Gustedt, Arbogast: Higher order automatic differentiation for special functions with Modular C, Optim. Methods Softw. 33 (2018), no. 4–6, 963–987. 10.1080/10556788.2018.1428603Search in Google Scholar

[7] W. J. Cody, K. A. Paciorek and H. C. Thacher, Jr., Chebyshev approximations for Dawson’s integral, Math. Comp. 24 (1970), 171–178. 10.1090/S0025-5718-1970-0258236-8Search in Google Scholar

[8] V. N. Fadeeva and N. M. Terent’ev, Tables of Values of the Probabilistic Integral for Complex Arguments, Moscow State Publishing House for Technical Theoritical Literature, Moscow, 1954. Search in Google Scholar

[9] V. N. Fadeeva and N. M. Terent’ev, Tables of the Probabilistic Integral w(z)=e-z2(1+2iπ0zet2𝑑t) for Complex Arguments, Oxford Pargamon Press, Oxford, 1961. Search in Google Scholar

[10] B. D. Fried and S. D. Conte, The Plasma Dispersion Function, Academic Press, New York, 1961. Search in Google Scholar

[11] W. Gautschi, Efficient computation of the complex error function, SIAM J. Numer. Anal. 7 (1970), 187–198. 10.1137/0707012Search in Google Scholar

[12] G. V. Gordeyev, Plasma oscillations in a magnetic field, Sov. Phys. JETP 6 (1952), 660–669. Search in Google Scholar

[13] E. A. Jackson, Drift instabilities in a Maxwellian plasma, Phys. Fluids 3 (1960), 786–792. 10.1063/1.1706125Search in Google Scholar

[14] E. A. Marchisotto and G.-A. Zakeri, An invitation to integration in finite terms, College Math. J. 25 (1994), 295–308. 10.1080/07468342.1994.11973625Search in Google Scholar

[15] J. H. McCabe, A continued fraction expansion, with a truncation error estimate, for Dawson’s integral, Math. Comp. 28 (1974), 811–816. Search in Google Scholar

[16] S. J. McKenna, A method of computing the complex probability function and other related functions over the whole complex plane, Astrophys. Space Sci. 107 (1984), 71–83. 10.1007/BF00649615Search in Google Scholar

[17] A. B. Mikhailovskiy, Theory of plasma instabilities (in Russian), Russia Atomizdat, 1975. Search in Google Scholar

[18] V. Nijimbere, Evaluation of the non-elementary integral eλxα𝑑x, α2, and other related integrals, Ural Math. J. 3 (2017), no. 2, 130–142. 10.15826/umj.2017.2.014Search in Google Scholar

[19] R. B. Paris, The asymptotic expansion of Gordeyev’s integral, Z. Angew. Math. Phys. 49 (1998), no. 2, 322–338. 10.1007/PL00001486Search in Google Scholar

[20] G. P. M. Poppe and C. M. J. Wijers, More efficient computation of the complex error function, ACM Trans. Math. Software 16 (1990), no. 1, 38–46. 10.1145/77626.77629Search in Google Scholar

[21] M. Rosenlicht, Integration in finite terms, Amer. Math. Monthly 79 (1972), 963–972. 10.1080/00029890.1972.11993166Search in Google Scholar

[22] F. Schreier, The Voigt and complex error functions: A comparison of computational methods, J. Quant. Spectrosc. Radiat. Transfer 48 (1992), 743–762. 10.1016/0022-4073(92)90139-USearch in Google Scholar

[23] A. G. Sitenko, Fluctuations and Nonlinear Wave Interactions in Plasmas. Translated from the Russian by O. D. Kocherga, International Series in Natural Philosophy 107, Pergamon Press, New York, 1982. 10.1016/B978-0-08-025051-9.50012-3Search in Google Scholar

[24] T. H. Stix, The Theory of Plasma Waves, McGraw-Hill, New York, 1962. Search in Google Scholar

[25] J. A. C. Weideman, Computation of the complex error function, SIAM J. Numer. Anal. 31 (1994), no. 5, 1497–1518. 10.1137/0731077Search in Google Scholar

[26] M. R. Zaghloul and A. N. Ali, Algorithm 916: Computing the Faddeyeva and Voigt functions, ACM Trans. Math. Software 38 (2011), no. 2, Paper No. 15. 10.1145/2049673.2049679Search in Google Scholar

[27] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/. Search in Google Scholar

Received: 2017-03-23
Revised: 2018-07-07
Accepted: 2019-09-08
Published Online: 2019-11-20
Published in Print: 2019-12-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jaa-2019-0019/html
Scroll to top button