Startseite Decay rates for a coupled quasilinear system of nonlinear viscoelastic equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Decay rates for a coupled quasilinear system of nonlinear viscoelastic equations

  • Muhammad I. Mustafa ORCID logo EMAIL logo und Mohammad Kafini
Veröffentlicht/Copyright: 21. Mai 2019

Abstract

In this paper, we consider a nonlinear quasilinear system of two coupled viscoelastic equations and investigate the asymptotic behavior of this system. We establish an explicit and general formula for the energy decay rates. Our result allows a wider class of relaxation functions, which improves earlier results existing in the literature.

Funding statement: This work was supported by MASEP Research Group in the Research Institute of Sciences and Engineering at University of Sharjah.

References

[1] F. Alabau-Boussouira and P. Cannarsa, A general method for proving sharp energy decay rates for memory-dissipative evolution equations, C. R. Math. Acad. Sci. Paris 347 (2009), no. 15–16, 867–872. 10.1016/j.crma.2009.05.011Suche in Google Scholar

[2] D. Andrade and A. Mognon, Global solutions for a system of Klein–Gordon equations with memory, Bol. Soc. Parana. Mat. (3) 21 (2003), no. 1–2, 127–136. 10.5269/bspm.v21i1-2.7512Suche in Google Scholar

[3] V. I. Arnol’d, Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math. 60, Springer, New York, 1989. 10.1007/978-1-4757-2063-1Suche in Google Scholar

[4] M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci. 24 (2001), no. 14, 1043–1053. 10.1002/mma.250Suche in Google Scholar

[5] M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal. 68 (2008), no. 1, 177–193. 10.1016/j.na.2006.10.040Suche in Google Scholar

[6] M. M. Cavalcanti and H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim. 42 (2003), no. 4, 1310–1324. 10.1137/S0363012902408010Suche in Google Scholar

[7] M. de Lima Santos, Decay rates for solutions of a system of wave equations with memory, Electron. J. Differential Equations 2002 (2002), Paper No. 38. 10.14232/ejqtde.2002.1.7Suche in Google Scholar

[8] A. Guesmia and S. A. Messaoudi, A new approach to the stability of an abstract system in the presence of infinite history, J. Math. Anal. Appl. 416 (2014), no. 1, 212–228. 10.1016/j.jmaa.2014.02.030Suche in Google Scholar

[9] X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping, Math. Methods Appl. Sci. 32 (2009), no. 3, 346–358. 10.1002/mma.1041Suche in Google Scholar

[10] X. Han and M. Wang, General decay estimate of energy for the second order evolution equations with memory, Acta Appl. Math. 110 (2010), no. 1, 195–207. 10.1007/s10440-008-9397-xSuche in Google Scholar

[11] I. Lasiecka, S. A. Messaoudi and M. I. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys. 54 (2013), no. 3, Article ID 031504. 10.1063/1.4793988Suche in Google Scholar

[12] W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms, J. Math. Phys. 50 (2009), no. 11, Article ID 113506. 10.1063/1.3254323Suche in Google Scholar

[13] W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations, Nonlinear Anal. 71 (2009), no. 5–6, 2257–2267. 10.1016/j.na.2009.01.060Suche in Google Scholar

[14] W. Liu, General decay of solutions of a nonlinear system of viscoelastic equations, Acta Appl. Math. 110 (2010), no. 1, 153–165. 10.1007/s10440-008-9391-3Suche in Google Scholar

[15] L. A. Medeiros and M. M. Miranda, Weak solutions for a system of nonlinear Klein–Gordon equations, Ann. Mat. Pura Appl. (4) 146 (1987), 173–183. 10.1007/BF01762364Suche in Google Scholar

[16] S. A. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. Appl. 341 (2008), no. 2, 1457–1467. 10.1016/j.jmaa.2007.11.048Suche in Google Scholar

[17] S. A. Messaoudi, General decay of the solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Anal. 69 (2008), no. 8, 2589–2598. 10.1016/j.na.2007.08.035Suche in Google Scholar

[18] S. A. Messaoudi and M. M. Al-Gharabli, A general stability result for a nonlinear wave equation with infinite memory, Appl. Math. Lett. 26 (2013), no. 11, 1082–1086. 10.1016/j.aml.2013.06.002Suche in Google Scholar

[19] S. A. Messaoudi and M. M. Al-Gharabli, A general decay result of a nonlinear system of wave equations with infinite memories, Appl. Math. Comput. 259 (2015), 540–551. 10.1016/j.amc.2015.02.085Suche in Google Scholar

[20] S. A. Messaoudi and M. I. Mustafa, A stability result in a memory-type Timoshenko system, Dynam. Systems Appl. 18 (2009), no. 3–4, 457–468. 10.3934/cpaa.2013.12.957Suche in Google Scholar

[21] S. A. Messaoudi and M. I. Mustafa, On convexity for energy decay rates of a viscoelastic equation with boundary feedback, Nonlinear Anal. 72 (2010), no. 9–10, 3602–3611. 10.1016/j.na.2009.12.040Suche in Google Scholar

[22] S. A. Messaoudi and N.-E. Tatar, Exponential and polynomial decay for a quasilinear viscoelastic equation, Nonlinear Anal. 68 (2008), no. 4, 785–793. 10.1016/j.na.2006.11.036Suche in Google Scholar

[23] S. A. Messaoudi and N.-E. Tatar, Uniform stabilization of solutions of a nonlinear system of viscoelastic equations, Appl. Anal. 87 (2008), no. 3, 247–263. 10.1080/00036810701668394Suche in Google Scholar

[24] J. E. Muñoz Rivera, Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math. 52 (1994), no. 4, 629–648. 10.1090/qam/1306041Suche in Google Scholar

[25] J. E. Muñoz Rivera and R. K. Barreto, Uniform rates of decay in nonlinear viscoelasticity for polynomial decaying kernels, Appl. Anal. 60 (1996), no. 3–4, 341–357. 10.1080/00036819608840437Suche in Google Scholar

[26] J. E. Muñoz Rivera and E. Cabanillas Lapa, Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomially decaying kernels, Comm. Math. Phys. 177 (1996), no. 3, 583–602. 10.1007/BF02099539Suche in Google Scholar

[27] J. E. Muñoz Rivera, E. C. Lapa and R. Barreto, Decay rates for viscoelastic plates with memory, J. Elasticity 44 (1996), no. 1, 61–87. 10.1007/BF00042192Suche in Google Scholar

[28] J. E. Muñoz Rivera and M. G. Naso, On the decay of the energy for systems with memory and indefinite dissipation, Asymptot. Anal. 49 (2006), no. 3–4, 189–204. Suche in Google Scholar

[29] J. E. Muñoz Rivera, M. G. Naso and F. M. Vegni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, J. Math. Anal. Appl. 286 (2003), no. 2, 692–704. 10.1016/S0022-247X(03)00511-0Suche in Google Scholar

[30] J. E. Muñoz Rivera and A. Peres Salvatierra, Asymptotic behaviour of the energy in partially viscoelastic materials, Quart. Appl. Math. 59 (2001), no. 3, 557–578. 10.1090/qam/1848535Suche in Google Scholar

[31] M. I. Mustafa, Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations, Nonlinear Anal. Real World Appl. 13 (2012), no. 1, 452–463. 10.1016/j.nonrwa.2011.08.002Suche in Google Scholar

[32] M. I. Mustafa and S. A. Messaoudi, Energy decay rates for a Timoshenko system with viscoelastic boundary conditions, Appl. Math. Comput. 218 (2012), no. 18, 9125–9131. 10.1016/j.amc.2012.02.065Suche in Google Scholar

[33] M. I. Mustafa and S. A. Messaoudi, General stability result for viscoelastic wave equations, J. Math. Phys. 53 (2012), no. 5, Article ID 053702. 10.1063/1.4711830Suche in Google Scholar

[34] J. E. M. N. Rivera and H. P. Oquendo, Exponential stability to a contact problem of partially viscoelastic materials, J. Elasticity 63 (2001), no. 2, 87–111. 10.1023/A:1014091825772Suche in Google Scholar

[35] I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France 91 (1963), 129–135. 10.24033/bsmf.1593Suche in Google Scholar

[36] J. Zhang, On the standing wave in coupled non-linear Klein–Gordon equations, Math. Methods Appl. Sci. 26 (2003), no. 1, 11–25. 10.1002/mma.340Suche in Google Scholar

Received: 2016-10-24
Accepted: 2019-03-11
Published Online: 2019-05-21
Published in Print: 2019-06-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2019-0011/html
Button zum nach oben scrollen