Startseite Some families of sublinear correspondences
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some families of sublinear correspondences

  • Parvaneh Najmadi ORCID logo und Masoumeh Aghajani ORCID logo EMAIL logo
Veröffentlicht/Copyright: 21. Mai 2019

Abstract

Let K be a closed convex cone in a real Banach space, H:Kcc(K) a continuous sublinear correspondence with nonempty, convex and compact values in K, and let f: be defined by f(t)=n=0antn, where t, an0, n. We show that the correspondence Ft(x):=n=0antnHn(x),(xK) is continuous and sublinear for every t0 and FtFs(x)n=0cnHn(x), xK, where cn=k=0nakan-ktksn-k, t,s0.

MSC 2010: 46A55; 54C60; 39B12

References

[1] M. Aghajani, K. Nourouzi and D. O’Regan, The continuity of linear and sublinear correspondences defined on cones, Bull. Iranian Math. Soc. 41 (2015), no. 1, 43–55. Suche in Google Scholar

[2] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd ed., Springer, Berlin, 2006. Suche in Google Scholar

[3] M. Piszczek, On multivalued cosine families, J. Appl. Anal. 13 (2007), no. 1, 57–76. 10.1515/JAA.2007.57Suche in Google Scholar

[4] J. Plewnia, On a family of set-valued functions, Publ. Math. Debrecen 46 (1995), no. 1–2, 149–159. 10.5486/PMD.1995.1513Suche in Google Scholar

[5] H. Rädström, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165–169. 10.1090/S0002-9939-1952-0045938-2Suche in Google Scholar

[6] A. Smajdor, Increasing iteration semigroups of Jensen set-valued functions, Aequationes Math. 56 (1998), no. 1–2, 131–142. 10.1007/s000100050049Suche in Google Scholar

[7] J. Szczawi’nska, On some families of set-valued functions, Aequationes Math. 78 (2009), no. 1–2, 157–166. 10.1007/s00010-009-2966-xSuche in Google Scholar

Received: 2016-08-21
Accepted: 2019-03-11
Published Online: 2019-05-21
Published in Print: 2019-06-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2019-0010/html
Button zum nach oben scrollen