Startseite Some fractional differential equations involving generalized hypergeometric functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some fractional differential equations involving generalized hypergeometric functions

  • Praveen Agarwal ORCID logo , Feng Qi ORCID logo EMAIL logo , Mehar Chand ORCID logo und Gurmej Singh
Veröffentlicht/Copyright: 10. Mai 2019

Abstract

In the paper, using the generalized Marichev–Saigo–Maeda fractional operator, the authors establish some fractional differential equations associated with generalized hypergeometric functions and, by employing integral transforms, present some image formulas of the resulting equations.

Acknowledgements

The authors thank the anonymous referees for their valuable comments on the original version of this paper.

References

[1] M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19–32. 10.1016/S0377-0427(96)00102-1Suche in Google Scholar

[2] M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), no. 2, 589–602. 10.1016/j.amc.2003.09.017Suche in Google Scholar

[3] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006. Suche in Google Scholar

[4] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res. Notes Math. Ser. 301, Longman Scientific & Technical, Harlow, 1994. Suche in Google Scholar

[5] V. Kiryakova, On two Saigo’s fractional integral operators in the class of univalent functions, Fract. Calc. Appl. Anal. 9 (2006), no. 2, 159–176. Suche in Google Scholar

[6] O. I. Marichev, Volterra equation of Mellin convolution type with a Horn function in the kernel, Izv. AN BSSR Ser. Fiz.-Mat. Nauk 1 (1974), 128–129. Suche in Google Scholar

[7] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. Suche in Google Scholar

[8] E. Özergin, Some properties of hypergeometric functions, Ph.D. thesis, Eastern Mediterranean University, 2011. Suche in Google Scholar

[9] E. Özergin, M. A. Özarslan and A. Altın, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math. 235 (2011), no. 16, 4601–4610. 10.1016/j.cam.2010.04.019Suche in Google Scholar

[10] R. K. Parmar, A new generalization of gamma, beta, hypergeometric and confluent hypergeometric functions, Matematiche (Catania) 68 (2013), no. 2, 33–52. Suche in Google Scholar

[11] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of Their Applications, Math. Sci. Eng. 198, Academic Press, San Diego, 1999. Suche in Google Scholar

[12] T. Pohlen, The Hadamard product and universal power series, Dissertation, Universitat Trier, 2009. Suche in Google Scholar

[13] E. D. Rainville, Special Functions, first ed., Chelsea, New York, 1971. Suche in Google Scholar

[14] M. Saigo, On generalized fractional calculus operators: Recent advances in applied mathematics, Proceedings of the International Workshop held at Kuwait University (Kuwait 1996), Kuwait University, Kuwait (1996). Suche in Google Scholar

[15] M. Saigo and A. A. Kilbas, Generalized fractional calculus of the H-function, Fukuoka Univ. Sci. Rep. 29 (1999), no. 1, 31–45. Suche in Google Scholar

[16] M. Saigo and N. Maeda, More generalization of fractional calculus, Transform Methods & Special Functions (Varna ’96), Bulgarian Academy of Sciences, Sofia (1998), 386–400. Suche in Google Scholar

[17] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Yverdon, 1993. Suche in Google Scholar

[18] R. K. Saxena and M. Saigo, Generalized fractional calculus of the H-function associated with the Appell function F3, J. Fract. Calc. 19 (2001), 89–104. Suche in Google Scholar

[19] I. N. Sneddon, The Use of Integral Transforms, Tata McGraw-Hill, New Delhi, 1972. Suche in Google Scholar

[20] H. M. Srivastava and P. Agarwal, Certain fractional integral operators and the generalized incomplete hypergeometric functions, Appl. Appl. Math. 8 (2013), no. 2, 333–345. Suche in Google Scholar

[21] H. M. Srivastava, R. Agarwal and S. Jain, Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions, Math. Methods Appl. Sci. 40 (2017), no. 1, 255–273. 10.1002/mma.3986Suche in Google Scholar

[22] H. M. Srivastava, A. Çetinkaya and I. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 (2014), 484–491. 10.1016/j.amc.2013.10.032Suche in Google Scholar

[23] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Amsterdam, 2012. 10.1016/B978-0-12-385218-2.00002-5Suche in Google Scholar

[24] H. M. Srivastava and M. Saigo, Multiplication of fractional calculus operators and boundary value problems involving the Euler–Darboux equation, J. Math. Anal. Appl. 121 (1987), no. 2, 325–369. 10.1016/0022-247X(87)90251-4Suche in Google Scholar

[25] H. M. Srivastava and V. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel, Appl. Math. Comput. 211 (2009), no. 1, 198–210. 10.1016/j.amc.2009.01.055Suche in Google Scholar

[26] R. Srivastava and N. E. Cho, Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. Comput. 234 (2014), 277–285. 10.1016/j.amc.2014.02.036Suche in Google Scholar

Received: 2017-10-18
Revised: 2018-05-24
Accepted: 2018-08-23
Published Online: 2019-05-10
Published in Print: 2019-06-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2019-0004/html
Button zum nach oben scrollen