Startseite The complex mechanistic aspects of redox-active compounds, commonly regarded as SOD mimics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The complex mechanistic aspects of redox-active compounds, commonly regarded as SOD mimics

  • Ines Batinic-Haberle EMAIL logo , Artak Tovmasyan und Ivan Spasojevic
Veröffentlicht/Copyright: 8. Januar 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This review aims to clarify (1) what is a true mimic of superoxide dismutase family of enzymes, SOD; and (2) whether such compound could act as SOD mimic in a complex biological milieu. Several groups of compounds (metalloporphyrins, metallocorroles, Mn biliverdins, Mn cyclic polyamines, Mn salens, and metal oxides and salts) have been described. Their ability to catalyze the dismutation of O2·–, [kcat(O2·–)], thermodynamic property that supports high catalytic ability (E1/2), kinetic factors that facilitate the catalysis, and the stability of compounds, which assures the integrity of metal coordination sphere where reactions of interest occur have been discussed. The other possible in vivo actions of those compounds, such as peroxynitrite and hypochlorite reduction, peroxidase-like activity, thiol oxidase activity etc., have been described as well. Based on in vivo studies it appears that kcat(O2·–) for Mn(III) N-substituted pyridylporphyrins parallels their therapeutic ability. The reason for that lies in their electrophilic nature which favors reactions with nucleophilic (anionic) reactive species (O2·–, ONOO, ClO, HO2, CO3·–) and simple or protein thiolates. Their in vivo multiple rather than single modes of actions, would be determined by: (a) their redox properties; (b) localization at targeted cellular site; and (c) redox environment of diseased or mutated/cancer cell. Quality of any drug preparation and the knowledge of researchers on its properties are essential when its mechanistic aspects are explored.


Corresponding authors: Ines Batinic-Haberle, Department of Radiation Oncology, Duke University Medical Center, NC 27710, Durham, USA, e-mail: ; and Ivan Spasojevic, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA

The authors are thankful to Duke University’s CTSA grant 1 UL 1 RR024128-01 from NCRR/NIH (AT, IBH, IS), W.H. Coulter Translational Partners Grant Program (IBH, IS, AT), the NIH/NCI Duke Comprehensive Cancer Center Core Grant (5-P30-CA14236-29) (IS), PK/PD DCI Shared Resources, and IBH general research funds (AT).

References

Abraham, S. K.; Sarma, L.; Kesavan, P. C. Protective effects of chlorogenic acid, curcumin and beta-carotene against gamma-radiation-induced in vivo chromosomal damage. Mutat. Res. 1993, 303, 109–112.Suche in Google Scholar

Aitken, J. B.; Shearer, E. L.; Giles, N. M.; Lai, B.; Vogt, S.; Reboucas, J. S.; Batinic-Haberle, I.; Lay, P. A.; Giles, G. I. Intracellular targeting and pharmacological activity of the superoxide dismutase mimics MnTE-2-PyP5+ and MnTnHex-2-PyP5+ regulated by their porphyrin ring substituents. Inorg. Chem. 2013, 52, 4121–4123.Suche in Google Scholar

Ali, D. K.; Oriowo, M.; Tovmasyan, A.; Batinic-Haberle, I.; Benov, L. Late administration of Mn porphyrin-based SOD mimic enhances diabetic complications. Redox. Biol. 2013, 1, 457–466.Suche in Google Scholar

Amato, R. J.; Jac, J.; Hernandez-McClain, J. Motexafin gadolinium for the treatment of metastatic renal cell carcinoma, phase II study results. Clin. Genitourin. Cancer 2008, 6, 73–78.Suche in Google Scholar

Ansenberger-Fricano, K.; Ganini, D.; Mao, M.; Chatterjee, S.; Dallas, S.; Mason, R. P.; Stadler, K.; Santos, J. H.; Bonini, M. G. The peroxidase activity of mitochondrial superoxide dismutase. Free Radic. Biol. Med. 2013, 54, 116–124.Suche in Google Scholar

Archambeau, J. O.; Tovmasyan, A.; Pearlsten, R. D.; Crapo, J. D.; Batinic-Haberle, I. Superoxide dismutase mimic, MnTE-2-PyP5+ ameliorates acute and chronic proctitis following focal proton irradiation of the rat rectum. Redox Biol. 2013, 1, 599–607.Suche in Google Scholar

Archibald, F. S; Fridovich, I. The scavenging of superoxide radical by manganous complexes, in vitro. Arch. Biochem. Biophys. 1982, 214, 452–463.Suche in Google Scholar

Aston, K.; Rath, N.; Naik, A.; Slomczynska, U.; Schall, O. F.; Riley, D. P. Computer-aided design (CAD) of Mn(II) complexes: superoxide dismutase mimetics with catalytic activity exceeding the native enzyme. Inorg. Chem. 2001, 40, 1779–1789.Suche in Google Scholar

Bagga, P.; Patel, A. B. Regional cerebral metabolism in mouse under chronic manganese exposure: implications for manganism. Neurochem. Int. 2012, 60, 177–185.Suche in Google Scholar

Bakthavatchalu, V.; Dey, S.; Xu, Y.; Noel, T.; Jungsuwadee P.; Holley, A. K.; Dhar, S. K.; Batinic-Haberle, I.; St. Clair, D. K. Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polgamma against UV-induced inactivation. Oncogene 2012, 31, 2129–2139.Suche in Google Scholar

Barnese, K.; Gralla, E. B.; Cabelli, D. E.; Valentine, J. S. Manganous phosphate acts as a superoxide dismutase. J. Am. Chem. Soc. 2008, 130, 4604–4606.Suche in Google Scholar

Batinic-Haberle, I.; Liochev, S. I.; Spasojevic, I.; Fridovich, I. A potent superoxide dismutase mimic: manganese beta-octabromo-meso-tetrakis(-N-methylpyridinium-4-yl) porphyrin. Arch. Biochem. Biophys. 1997, 343, 225–233.Suche in Google Scholar

Batinic-Haberle, I.; Benov, L.; Spasojevic, I.; Fridovich, I. The ortho effect makes manganese(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin a powerful and potentially useful superoxide dismutase mimic. J. Biol. Chem. 1998, 273, 24521–24528.Suche in Google Scholar

Batinić-Haberle, I.; Spasojević, I.; Hambright, P.; Benov, L.; Crumbliss, A. L.; Fridovich, I. Relationship among redox potentials, proton dissociation constants of pyrrolic nitrogens, and in Vivo and in vitro superoxide dismutating activities of Manganese(III) and Iron(III) water-soluble porphyrins. Inorg. Chem. 1999, 38, 4011–4022.Suche in Google Scholar

Batinić-Haberle, I.; Spasojević, I.; Stevens, R. D.; Hambright, P.; Fridovich, I. Manganese(III) meso-tetrakis(ortho-N-alkylpyridyl)porphyrins. Synthesis, characterization, and catalysis of O2/̠– dismutation. J. Chem. Soc., Dalton Trans. 2002, 2689–96.10.1039/b201057gSuche in Google Scholar

Batinic-Haberle, I.; Spasojevic, I.; Stevens, R. D.; Hambright, P.; Neta, P.; Okado-Matsumoto, A.; Fridovich, I. New class of potent catalysts of O2.-dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethylimidazolylporphyrins. Dalton Trans. 2004, 11, 1696–1702.Suche in Google Scholar

Batinic-Haberle, I.; Spasojevic, I.; Stevens, R. D; Bondurant, B; Okado-Matsumoto, A; Fridovich, I; Vujaskovic, Z; Dewhirst, M. W. New PEG-ylated Mn(III) porphyrins approaching catalytic activity of SOD enzyme. Dalton Trans. 2006, 4, 617–624.Suche in Google Scholar

Batinic-Haberle, I.; Cuzzocrea, S.; Reboucas, J. S.; Ferrer-Sueta, G.; Mazzon, E.; Di Paola, R.; Radi, R.; Spasojevic, I.; Benov, L.; Salvemini, D. Pure MnTBAP selectively scavenges peroxynitrite over superoxide: comparison of pure and commercial MnTBAP samples to MnTE-2-PyP in two models of oxidative stress injury, an SOD-specific Escherichia coli model and carrageenan-induced pleurisy. Free Radic. Biol. Med. 2009, 46, 192–201.Suche in Google Scholar

Batinic-Haberle, I.; Reboucas, J. S.; Spasojevic, I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid. Redox Signal. 2010, 13, 877–918.Suche in Google Scholar

Batinic-Haberle, I.; Rajic, Z.; Benov, L. A combination of two antioxidants (an SOD mimic and ascorbate) produces a pro-oxidative effect forcing Escherichia coli to adapt via induction of oxyR regulon. Anticancer Agents Med. Chem. 2011a, 11, 329–340.Suche in Google Scholar

Batinic-Haberle, I; Rajic, Z; Tovmasyan, A; Reboucas, J.S.; Ye, X.; Leong, K. W.; Dewhirst, M. W.; Vujaskovic, Z.; Benov, L.; Spasojevic, I. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Radic. Biol. Med. 2011b, 51, 1035–1053.Suche in Google Scholar

Batinic-Haberle, I.; Reboucas, J. S.; Benov, L.; Spasojevic, I. Chemistry, Biology and Medical Effects of Water Soluble Metalloporphyrins. In Handbook of Porphyrin Science. Kadish, K. M., Smith, K. M., Guillard, R., Eds. Singapore: World Scientific, 2011c, pp. 291–393.10.1142/9789814322386_0004Suche in Google Scholar

Batinic-Haberle, I; Reboucas, J.S.; Spasojevic, I. Response to Rosenthal et al. Antioxid. Redox. Signal. 2011d, 14, 1174–1176.Suche in Google Scholar

Batinic-Haberle, I.; Spasojevic, I.; Tse H. M.; Tovmasyan, A.; Rajic, Z.; St. Clair, D. K.; Vujaskovic, Z.; Dewhirst, M. W.; Piganelli, J. D. Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities. Amino Acids 2012, 42, 95–113.Suche in Google Scholar

Batinic-Haberle, I.; Tovmasyan, A.; Roberts, E.; Vujaskovic, Z.; Leong, K. W.; Spasojevic, I. SOD therapeutics: latest insights into their structure-activity relationships and impact upon the cellular redox-based pathways. Antioxid Redox Signal 2013, DOI: 10.1089/ars.2012.5147.10.1089/ars.2012.5147Suche in Google Scholar PubMed PubMed Central

Baudry, M.; Etienne, S.; Bruce, A.; Palucki, M.; Jacobsen, E.; Malfroy, B. Salen-manganese complexes are superoxide dismutase-mimics. Biochem. Biophys. Res. Commun. 1993, 192, 964–968.Suche in Google Scholar

Belkacemi, A.; Doggui, S.; Dao, L.; Ramassamy, C. Challenges associated with curcumin therapy in Alzheimer disease. Expert Rev. Mol. Med. 2011, 13, e34.Suche in Google Scholar

Benatar, M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol. Dis. 2007, 26, 1–13.Suche in Google Scholar

Benov, L.; Batinic-Haberle, I. A manganese porphyrin suppresses oxidative stress and extends the life span of streptozotocin-diabetic rats. Free Radic. Res. 2005, 39, 81–88.Suche in Google Scholar

Benov, L; Fridovich, I. Growth in iron-enriched medium partially compensates Escherichia coli for the lack of manganese and iron superoxide dismutase. J. Biol. Chem., 1998, 273, 10313–10316.10.1074/jbc.273.17.10313Suche in Google Scholar PubMed

Bottino, R.; Balamurugan, A. N.; Tse, H.; Thirunavukkarasu, C.; Ge, X.; Profozich, J.; Milton, M.; Ziegenfuss, A.; Trucco, M.; Piganelli, J. D. Response of human islets to isolation stress and the effect of antioxidant treatment. Diabetes 2004, 53, 2559–2568.Suche in Google Scholar

Brennan M. L.; Wu W.; Fu X.; Shen Z.; Song W.; Frost H.; Vadseth C.; Narine L.; Lenkiewicz E.; Borchers M. T.; et al. A tale of two controversies, defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J. Biol. Chem. 2002, 277, 17415–17427.Suche in Google Scholar

Buettner, G. R. Superoxide dismutase in redox biology, the roles of superoxide and hydrogen peroxide. Anticancer Agents Med. Chem. 2011, 11, 341–346.Suche in Google Scholar

Buettner, G. R.; Ng, C. F.; Wang, M.; Rodgers, V. G.; Schafer, F. Q. A new paradigm, manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic. Biol. Med. 2006, 41, 1338–13350.Suche in Google Scholar

Carballal, S.; Valez, V.; Batinic-Haberle, I.; Ferrer-Sueta, G.; Radi, R. Reactivity and Cytoprotective Capacity of the Synthetic Catalytic Antioxidants Mnporphyrins towards Peroxynitrite and Hypochlorite. Free Radic. Biol. Med. 2013, 65, S125–S122.Suche in Google Scholar

Carnieri, N.; Harriman, A.; Porter, G. Photochemistry of manganese porphyrins, part 6, oxidation-reduction equilibria of manganese(III) porphyrins in aqueous solution. J. Chem. Soc. Dalton Trans. 1982, 931–938.10.1039/DT9820000931Suche in Google Scholar

Chen, Q.; Espey, M. G.; Krishna, M. C.; Mitchell, J. B.; Corpe, C. P.; Buettner, G. R.; Shacter, E.; Levine M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells, action as a pro-drug to deliver hydrogen peroxide to tissues. Proc. Natl. Acad. Sci. USA 2005, 102, 13604–13609.Suche in Google Scholar

Chen, Q.; Espey, M. G.; Sun, A. Y.; Lee, J. H.; Krishna, M. C.; Shacter, E.; Choyke, P. L.; Pooput, C; Kirk, K. L.; Buettner, G. R.; et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc. Natl. Acad. Sci. USA 2007, 104, 8749–8754.Suche in Google Scholar

Chen, Q.; Espey, M. G.; Sun, A. Y.; Pooput, C.; Kirk, K. L.; Krishna, M. C.; Khosh, D. B.; Drisko, J.; Levine, M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc. Natl. Acad. Sci. USA 2008, 105, 11105–11109.Suche in Google Scholar

Cheng, G.; Lopez, M.; Zielonka, J.; Hauser, A. D.; Joseph, J.; McAllister, D.; Rowe, J. J.; Sugg, S. L.; Williams, C. L.; Kalyanaraman, B. Mitochondria-targeted nitroxides exacerbate Fluvastatin-mediated cytostatic and cytotoxic effects in breast cancer cells. Cancer Biol. Ther. 2011, 12, 707–717.Suche in Google Scholar

Chouchani, E. T.; Hurd, T. R.; Nadtochiy, S. M.; Brookes, P. S.; Fearnley, I. M.; Lilley, K. S.; Smith, R. A.; Murphy, M. P. Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE), implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem. J. 2010, 430, 49–59.Suche in Google Scholar

Cocheme, H. M.; Quin, C.; McQuaker, S. J.; Cabreiro, F.; Logan, A.; Prime, T. A.; Abakumova, I.; Patel, J. V.; Fearnley, I. M.; James, A. M.; et al. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 2011, 3, 340–350.Suche in Google Scholar

Cohen, J.; Dorai, T.; Ding, C.; Batinic-Haberle, I.; Grasso, M. The administration of renoprotective agents extends warm ischemia in a rat model. J. Endourol. 2013, 27, 343–348.Suche in Google Scholar

Colon, J.; Herrera, L.; Smith, J.; Patil, S.; Komanski, C.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomedicine 2009, 5, 225–231.Suche in Google Scholar

Colon, J.; Hsieh, N.; Ferguson, A.; Kupelian, P.; Seal, S.; Jenkins, D. W.; Baker, C. H. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2. Nanomedicine 2010, 6, 698–705.Suche in Google Scholar

Csont, T.; Viappiani, S.; Sawicka, J.; Slee, S.; Altarejos, J. Y.; Batinic-Haberle, I.; Schulz, R. The involvement of superoxide and iNOS-derived NO in cardiac dysfunction induced by pro-inflammatory cytokines. J. Mol. Cell. Cardiol. 2005, 39, 833–840.Suche in Google Scholar

Cummins, T. D.; Higdon, A. N.; Kramer, P. A.; Chacko, B. K.; Riggs, D. W.; Salabei, J. K.; Dell’italia, L. J.; Zhang, J.; Darley-Usmar, V. M.; Hill, B. G. Utilization of fluorescent probes for the quantification and identification of subcellular proteomes and biological processes regulated by lipid peroxidation products. Free Radic. Biol. Med. 2013, 59, 56–68.Suche in Google Scholar

Cuzzocrea, S.; Mazzon, E.; Dugo, L.; Caputi, A. P.; Riley, D. P.; Salvemini, D. Protective effects of M40403, a superoxide dismutase mimetic, in a rodent model of colitis. Eur. J. Pharmacol. 2001, 432, 79–89.Suche in Google Scholar

Cuzzocrea, S.; Mazzon, E.; di Paola, R.; Genovese, T.; Muia, C.; Caputi, A. P.; Salvemini, D. Synergistic interaction between methotrexate and a superoxide dismutase mimetic – Pharmacologic and potential clinical significance. Arthritis Rheum. 2005, 52, 3755–3760.Suche in Google Scholar

Das, L; Vinayak, M. Anti-carcinogenic action of curcumin by activation of antioxidant defence system and inhibition of NF-kappaB signalling in lymphoma-bearing mice. Biosci. Rep. 2012, 32, 161–170.Suche in Google Scholar

Day, B. J. Antioxidant therapeutics, Pandora’s box. Free Radic. Biol. Med. 2013.10.1016/j.freeradbiomed.2013.05.047Suche in Google Scholar PubMed PubMed Central

Day, B. J.; Fridovich, I.; Crapo, J. D. Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxide-mediated injury. Arch. Biochem. Biophys. 1997, 347, 256–262.Suche in Google Scholar

DeFreitas-Silva, G.; Reboucas, J. S.; Spasojevic, I.; Benov, L.; Idemori, Y. M.; Batinic-Haberle, I. SOD-like activity of Mn(II) beta-octabromo-meso-tetrakis(N-methylpyridinium-3-yl)porphyrin equals that of the enzyme itself. Arch. Biochem. Biophys. 2008, 477, 105–112.Suche in Google Scholar

Delmastro-Greenwood, M. M.; Tse, H. M.; Piganelli, J. D. Effects of metalloporphyrins on reducing inflammation and autoimmunity. Antioxid Redox Signal 2013a, DOI: 10.1089/ars.2013.5257.10.1089/ars.2013.5257Suche in Google Scholar PubMed

Delmastro-Greenwood, M. M.; Votyakova, T.; Goetzman, E.; Marre, M. L.; Previte, D. M.; Tovmasyan, A.; Batinic-Haberle, I.; Trucco, M.; Piganelli, J. D. Mn porphyrin regulation of aerobic glycolysis, implications on the activation of diabetogenic immune cells. Antioxid Redox. Signal 2013b, 19, 1902–1915.10.1089/ars.2012.5167Suche in Google Scholar PubMed PubMed Central

Demicheli, V.; Quijano, C.; Alvarez, B.; Radi, R. Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitric oxide and superoxide. Free Radic. Biol. Med. 2007, 42, 1359–1368.Suche in Google Scholar

Desideri, A.; Falconi, M.; Parisi, V.; Morante, S.; Rotilio, G. Is the activity-linked electrostatic gradient of bovine Cu, Zn superoxide dismutases conserved in homologous enzymes irrespective of the number and distribution of charges? Free Radic. Biol. Med. 1988, 5, 313–317.Suche in Google Scholar

Dessolin, J.; Schuler, M.; Quinart, A.; De Giorgi, F.; Ghosez, L.; Ichas, F. Selective targeting of synthetic antioxidants to mitochondria, towards a mitochondrial medicine for neurodegenerative diseases? Eur. J. Pharmacol. 2002, 447, 155–161.Suche in Google Scholar

Doctrow, S. R.; Huffman, K.; Marcus, C. B.; Tocco, G.; Malfroy, E.; Adinolfi, C. A.; Kruk, H.; Baker, K.; Lazarowych, N.; Mascarenhas, J.; et al. Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents, structure-activity relationship studies. J. Med. Chem. 2002, 45, 4549–4558.Suche in Google Scholar

Doctrow, S. R.; Baudry, M.; Huffman, K.; Malfroy, B.; Melov S. Salen Manganese Complexes, Multifunctional Catalytic Antioxidants Protective in Models for Neurodegenerative Diseases of Aging in Medicinal Inorganic Chemistry. In American Chemical Society Symposium Series 903, ACS. Sessler, J., Doctrow S. R., McMurry T., Lippard S, Eds. Oxford University Press, 2005, pp 319–347.10.1021/bk-2005-0903.ch018Suche in Google Scholar

Dorai, T.; Fishman, A. I.; Ding, C.; Batinic-Haberle, I.; Goldfarb, D. S.; Grasso, M. Amelioration of renal ischemia-reperfusion injury with a novel protective cocktail. J. Urol. 2011, 186, 2448–2454.Suche in Google Scholar

Dowding, J. M.; Dosani, T.; Kumar, A.; Seal, S.; Self, W. T. Cerium oxide nanoparticles scavenge nitric oxide radical (NO). Chem. Commun. (Camb) 2012, 48, 4896–4898.Suche in Google Scholar

Eckshtain, M.; Zilbermann, I.; Mahammed, A.; Saltsman, I.; Okun, Z.; Maimon, E.; Cohen, H.; Meyerstein, D.; Gross, Z. Superoxide dismutase activity of corrole metal complexes. Dalton Trans. 2009, 7879–7882.10.1039/b911278bSuche in Google Scholar PubMed

Evans, M. K.; Tovmasyan, A.; Batinic-Haberle, I.; Devi, G. R. Mn Porphyrin in combination with ascorbate acts as a pro-oxidant and mediates caspase-independent cancer cell death. Free Radic. Biol. Med. 2013, DOI: 10.1016/j.freeradbiomed.2013.11.031.10.1016/j.freeradbiomed.2013.11.031Suche in Google Scholar

Fang, J.; Seki, T.; Maeda, H. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv. Drug. Deliv. Rev. 2009, 61, 290–302.Suche in Google Scholar

Faraggi, M.; Peretz, P.; Weinraub, D. Chemical properties of water-soluble porphyrins. The reaction of a ‘picket-fence-like’ iron (III) complex with the superoxide oxygen couple. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1986, 49, 951–968.Suche in Google Scholar

Faulkner, K. M.; Liochev, S. I.; Fridovich, I. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J. Biol. Chem. 1994a, 269, 23471–243476.Suche in Google Scholar

Faulkner, K. M.; Stevens, R. D.; Fridovich, I. Characterization of Mn(III) complexes of linear and cyclic desferrioxamines as mimics of superoxide dismutase activity. Arch. Biochem. Biophys. 1994b, 310, 341–346.Suche in Google Scholar

Ferrer-Sueta, G.; Batinic-Haberle, I.; Spasojevic, I.; Fridovich, I.; Radi, R. Catalytic scavenging of peroxynitrite by isomeric Mn(III) N-methylpyridylporphyrins in the presence of reductants. Chem. Res. Toxicol. 1999, 12, 442–449.Suche in Google Scholar

Ferrer-Sueta, G.; Quijano, C.; Alvarez, B.; Radi, R. Reactions of manganese porphyrins and manganese-superoxide dismutase with peroxynitrite. Methods Enzymol 2002, 349, 23–37.Suche in Google Scholar

Ferrer-Sueta, G.; Vitturi, D.; Batinic-Haberle, I.; Fridovich, I.; Goldstein, S.; Czapski, G.; Radi, R. Reactions of manganese porphyrins with peroxynitrite and carbonate radical anion. J. Biol. Chem. 2003, 278, 27432–27438.Suche in Google Scholar

Filipovic, M. R.; Stanic, D.; Raicevic, S.; Spasic, M.; Niketic, V. Consequences of MnSOD interactions with nitric oxide: Nitric oxide dismutation and the generation of peroxynitrite and hydrogen peroxide. Free Radic. Res. 2007, 41, 62–72.Suche in Google Scholar

Filipovic, M. R.; Duerr, K.; Mojovic, M.; Simeunovic, V.; Zimmermann, R.; Niketic, V.; Ivanovic-Burmazovic, I. NO Dismutase Activity of Seven-Coordinate Manganese(II) Pentaazamacrocyclic Complexes. Angewandte Chemie-International Edition 2008, 47, 8735–8739.Suche in Google Scholar

Filipovic, M. R.; Koh, A. C.; Arbault, S.; Niketic, V.; Debus, A.; Schleicher, U.; Bogdan, C.; Guille, M.; Lemaitre, F.; Amatore, C.; et al. Striking inflammation from both sides, manganese(II) pentaazamacrocyclic SOD mimics act also as nitric oxide dismutases, a single-cell study. Angewandte Chemie-International Edition 2010, 49, 4228–4232.Suche in Google Scholar

Forman, H. J.; Davies, K. J.; Ursini, F. How do nutritional antioxidants really work, Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2013, DOI: 10.1016/j.freeradbiomed.2013.05.045.10.1016/j.freeradbiomed.2013.05.045Suche in Google Scholar

Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 1995, 64, 97–112.Suche in Google Scholar

Friedel, F. C.; Lieb, D.; Ivanovic-Burmazovic, I. Comparative studies on manganese-based SOD mimetics, including the phosphate effect, by using global spectral analysis. J. Inorg. Biochem. 2012, 109, 26–32.Suche in Google Scholar

Gad, S. C; Sullivan. D. W. Jr.; Crapo, J. D.; Spainhour, C. B. A Nonclinical safety assessment of MnTE-2-PyP, a manganese porphyrin. Int. J. Toxicol. 2013, 32, 274–287.Suche in Google Scholar

Gao, M. C.; Jia, X. D.; Wu, Q. F.; Cheng, Y.; Chen, F. R.; Zhang, J. Silencing Prx1 and/or Prx5 sensitizes human esophageal cancer cells to ionizing radiation and increases apoptosis via intracellular ROS accumulation. Acta Pharmacol. Sin. 2011, 32, 528–536.Suche in Google Scholar

Gaut, J. P.; Byun, J.; Tran, H. D.; Lauber, W. M.; Carroll, J. A.; Hotchkiss, R. S.; Belaaouaj, A.; Heinecke, J. W. Myeloperoxidase produces nitrating oxidants in vivo. J. Clin. Invest. 2002, 109, 1311–1319.Suche in Google Scholar

Getzoff, E. D.; Tainer, J. A.; Weiner, P. K.; Kollman, P. A.; Richardson, J. S.; Richardson, D.C. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature 1983, 306, 287–290.Suche in Google Scholar

Giles, S. S.; Batinic-Haberle, I.; Perfect, J. R.; Cox, G. M. Cryptococcus neoformans mitochondrial superoxide dismutase, an essential link between antioxidant function and high-temperature growth. Eukaryot. Cell 2005, 4, 46–54.Suche in Google Scholar

Goldstein, S.; Czapski, G.; Heller, A. Osmium tetroxide, used in the treatment of arthritic joints, is a fast mimic of superoxide dismutase. Free Radic. Biol. Med. 2005, 38, 839–845.Suche in Google Scholar

Goldstein, S.; Samuni, A.; Hideg, K.; Merenyi, G. Structure-activity relationship of cyclic nitroxides as SOD mimics and scavengers of nitrogen dioxide and carbonate radicals. J. Phys. Chem. A 2006, 110, 3679–3685.Suche in Google Scholar

Gu, M.; Imlay, J. A. Superoxide poisons mononuclear iron enzymes by causing mismetallation. Mol. Microbiol. 2013, 89, 123–134.Suche in Google Scholar

Haber, A.; Mahammed, A.; Fuhrman, B.; Volkova, N.; Coleman, R.; Hayek, T.; Aviram, M.; Gross Z. Amphiphilic/bipolar metallocorroles that catalyze the decomposition of reactive oxygen and nitrogen species, rescue lipoproteins from oxidative damage, and attenuate atherosclerosis in mice. Angew. Chem. Int. Ed. 2008, 47, 7896–7900.Suche in Google Scholar

Hachmeister, J. E.; Valluru, L.; Bao, F.; Liu, D. Mn (III) tetrakis (4-benzoic acid) porphyrin administered into the intrathecal space reduces oxidative damage and neuron death after spinal cord injury, a comparison with methylprednisolone. J. Neurotrauma 2006, 23, 1766–1778.Suche in Google Scholar

Halliwell, B. Free radicals and antioxidants, updating a personal view. Nutr. Rev. 2012, 70, 257–265.Suche in Google Scholar

Halliwell, B.; Gutteridge, J. M. Free Radicals in Biology and Medicine; Oxford University Press: New York, 2007.Suche in Google Scholar

Heckert, E. G.; Karakoti, A. S.; Seal, S.; Self, W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 2008, 29, 2705–2709.Suche in Google Scholar

Hempel, N.; Carrico, P. M.; Melendez, J. A. Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis. Anticancer Agents Med. Chem. 2011, 11, 191–201.Suche in Google Scholar

Hoffer, L. J.; Levine, M.; Assouline, S.; Melnychuk, D.; Padayatty, S. J.; Rosadiuk, K.; Rousseau, C.; Robitaille, L.; Miller, W. H. Jr. Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann. Oncol. 2008, 19, 1969–1974.Suche in Google Scholar

Holley, A. K.; Xu, Y.; Noel, T.; Bakthavatchalu, V.; Batinic-Haberle, I.; Clair, D. K. Manganese superoxide dismutase-mediated inside-out signaling in HaCaT human keratinocytes and SKH-1 mouse skin. Antioxid Redox Signal In revision, 2013.10.1016/j.freeradbiomed.2013.10.430Suche in Google Scholar

Hudnell, H. K. Effects from environmental Mn exposures: a review of the evidence from non-occupational exposure studies. Neurotoxicology 1999, 20, 379–397.10.1080/09593332008616832Suche in Google Scholar

Hyman, L. M.; Franz, K. J. Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols. Coord. Chem. Rev. 2012, 256, 2333–2356.Suche in Google Scholar

Ilan, Y.; Rabani, J.; Fridovich, I.; Pasternack, J. M. Superoxide dismuting activity of an iron porphyrin. Inorg. Nucl. Chem. Lett. 1981, 17, 93–96.10.1016/0020-1650(81)80035-9Suche in Google Scholar

Imlay, J. A. How oxygen damages microbes: Oxygen tolerance and obligate anaerobiosis. Adv. Microb. Physiol. 2002, 46, 111–153.Suche in Google Scholar

Imlay, J. A. Pathways of Oxidative Damage. Annu. Rev. Microbiol. 2003, 57, 395–418.Suche in Google Scholar

Imlay, J. A. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 2006, 59, 1073–1082.Suche in Google Scholar

Imlay, J. A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 2008, 77, 755–776.Suche in Google Scholar

James, A. M.; Cocheme, H. M.; Smith, R. A.; Murphy, M. P. Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J. Biol. Chem. 2005, 280, 21295–21312.Suche in Google Scholar

Jaramillo, M. C.; Frye, J. B.; Crapo, J. D.; Briehl, M. M.; Tome, M. E. Increased manganese superoxide dismutase expression or treatment with manganese porphyrin potentiates dexamethasone-induced apoptosis in lymphoma cells. Cancer Res. 2009, 69, 5450–5457.Suche in Google Scholar

Jaramillo, M. C.; Briehl, M. M.; Tome, M. E. Manganese porphyrin glutathionylates the p65 subunit of NF-κB to potentiate glucocorticoid-induced apoptosis in lymphoma. Free Radic. Biol. Med. 2010, 49, S63.Suche in Google Scholar

Jaramillo, M. C.; Briehl, M. M.; Crapo, J. D.; Batinic-Haberle, I.; Tome, M. E. Manganese porphyrin, MnTE-2-PyP5+, Acts as a pro-oxidant to potentiate glucocorticoid-induced apoptosis in lymphoma cells. Free Radic. Biol. Med. 2012, 52, 1272–1284.Suche in Google Scholar

Jaramillo, M.; Briehl, M. M.; Batinic-Haberle, I.; Tome, M. Inhibition of the electron transport chain via the prooxidative activity of manganese porphyrin-based SOD mimetics modulates bioenergetics and enhances the response to chemotherapy. Antioxid. Redox Signal: In Revision, 2013a.10.1016/j.freeradbiomed.2013.10.443Suche in Google Scholar

Jaramillo, M. C.; Briehl, M. M.; Batinic Haberle, I.; Tome, M. E. Manganese porphyrin glutathionylates mitochondrial electron transport chain enzymes and sensitizes lymphoma cells to anti-lymphoma therapeutics. Free Radic. Biol. Med.2013b, 65, S25.Suche in Google Scholar

Jiao, X. Y.; Gao, E.; Yuan, Y.; Wang, Y.; Lau, W. B.; Koch, W.; Ma, X. L.; Tao, L. INO-4885 [5,10,15,20-tetra]N(-benzyl-4’-carboxylate)-2-pyridinium[-21H,23H-porphine iron(III) chloride], a peroxynitrite decomposition catalyst, protects the heart against reperfusion injury in mice. J. Pharmacol. Exp. Ther. 2009, 328, 777–784.Suche in Google Scholar

Jin, N.; Lahaye, D. E.; Groves, J. T. A “push-pull” mechanism for heterolytic o-o bond cleavage in hydroperoxo manganese porphyrins. Inorg. Chem. 2010, 49, 11516–11524.Suche in Google Scholar

Jumbo-Lucioni, P. P.; Ryan, E. L.; Hopson, M. L.; Bishop, H. M.; Weitner, T.; Tovmasyan, A.; Spasojevic, I.; Batinic-Haberle, I.; Liang, Y.; Jones, D. P.; et al. Manganese-based superoxide dismutase mimics modify both acute and long-term outcome severity in a drosophila melanogaster model of classic galactosemia. Antioxid. Redox Signal 2013, DOI: 10.1089/ars.2012.5122.10.1089/ars.2012.5122Suche in Google Scholar PubMed PubMed Central

Jung, C.; Rong, Y.; Doctrow, S.; Baudry, M.; Malfroy, B.; Xu, Z. Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci. Lett. 2001, 304, 157–160.Suche in Google Scholar

Kachadourian, R.; Batinić-Haberle, I.; Fridovich, I. Syntheses and superoxide dismuting activities of partially (1-4) β-chlorinated derivatives of manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin. Inorg. Chem. 1999, 38, 391–396.Suche in Google Scholar

Kalyanaraman, B. Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species. Biochem. Soc. Trans. 2011, 39, 1221–1225.Suche in Google Scholar

Kelso, G. F.; Maroz, A.; Cocheme, H. M.; Logan, A.; Prime, T. A.; Peskin, A. V.; Winterbourn, C. C.; James, A. M.; Ross, M. F.; Brooker, S.; et al. A mitochondria-targeted macrocyclic Mn(II) superoxide dismutase mimetic. Chem. Biol. 2012, 19, 1237–1246.Suche in Google Scholar

Kim, A.; Joseph, S.; Khan, A.; Epstein, C. J.; Sobel, R.; Huang, T. T. Enhanced expression of mitochondrial superoxide dismutase leads to prolonged in vivo cell cycle progression and up-regulation of mitochondrial thioredoxin. Free Radic. Biol. Med. 2010, 48, 1501–1512.Suche in Google Scholar

Koppenol, W. H. The Physiological Role of the Charge Distribution on Superoxide Dismutase. In Oxygen and Oxyradicals in Chemistry and Biology, Rodgers, M. A., Powers E. L., Eds. Academic Press: New York, 1981, pp 671–674.Suche in Google Scholar

Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. (Camb) 2007, 10, 1056–1058.Suche in Google Scholar

Kumar, A.; Loo, S.; Shin, S. W.; Tuan, Z. T.; Chon, B. E.; Singh, R.; Putti, T.; Ong, C. W.; Salto-Tellez, M.; Goh, B. C.; et al. Targeting MnSOD in basal breast carcinoma using agonists of PPARγ: A new strategy for enhancing chemosensitivity. Antioxid. Redox Signal: In revision, 2013, DOI: 10.1089/ars.2013.5295.10.1089/ars.2013.5295Suche in Google Scholar PubMed PubMed Central

Kwei, K. A.; Finch, J. S.; Thompson, E. J.; Bowden, G. T. Transcriptional repression of catalase in mouse skin tumor progression. Neoplasia 2004, 6, 440–448.Suche in Google Scholar

Lange, M.; Szabo, C.; Enkhbaatar, P.; Connelly, R.; Horvath, E.; Hamahata, A.; Cox, R. A.; Esechie, A.; Nakano, Y.; Traber, L. D.; et al. Beneficial pulmonary effects of a metalloporphyrinic peroxynitrite decomposition catalyst in burn and smoke inhalation injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 300, L167–L175.Suche in Google Scholar

Lee, J. B.; Hunt, J. A.; Groves, J. T. Mechanisms of iron porphyrin reactions with peroxynitrite. J. Am. Chem. Soc. 1998, 120, 7493–7501.Suche in Google Scholar

Levine, M.; Espey, M. G.; Chen, Q. Losing and finding a way at C: New promise for pharmacologic ascorbate in cancer treatment. Free Radic. Biol. Med. 2009, 47, 27–29.Suche in Google Scholar

Li, Q. X.; Luo, Q. H.; Li, Y. Z.; Shen, M. C. A study on the mimics of Cu-Zn superoxide dismutase with high activity and stability: two copper(II) complexes of 1,4,7-triazacyclononane with benzimidazole groups. Dalton Trans. 2004, 2329–2335.10.1039/B404510FSuche in Google Scholar PubMed

Liberman, E. A.; Topaly, V. P.; Tsofina, L. M.; Jasaitis, A. A.; Skulachev, V. P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 1969, 222, 1076–1078.Suche in Google Scholar

Lide, D. R. editor. Handbook of Chemistry and Physics; CRC Press, Inc.: 1993–1994.Suche in Google Scholar

Lieb, D.; Kenkel, I.; Miljkovic, J.; Weber, N.; Filipovic, M. R.; Grohn, F.; Ivanovic-Burmazovic, I. Amphiphilic pentaazamacrocyclic manganese superoxide dismutase mimetics. Inorg. Chem. accepted for publication, 2013.10.1021/ic402469tSuche in Google Scholar PubMed

Limtrakul, P.; Lipigorngoson, S.; Namwong, O.; Apisariyakul, A.; Dunn, F. W. Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. Cancer Lett. 1997, 116, 197–203.Suche in Google Scholar

Ling, X.; Liu, D. Temporal and spatial profiles of cell loss after spinal cord injury: Reduction by a metalloporphyrin. J. Neurosci. Res. 2007, 85, 2175–2185.Suche in Google Scholar

Liochev, S. I. Superoxide dismutase mimics, other mimics, antioxidants, prooxidants and related matters. Chem. Res. Toxicol. 2013, 26, 1312–1319.Suche in Google Scholar

Macarthur, H.; Westfall, T. C.; Riley, D. P.; Misko, T. P.; Salvemini, D. Inactivation of catecholamines by superoxide gives new insights on the pathogenesis of septic shock. Proc. Natl. Acad. Sci. USA 2000, 97, 9753–9758.Suche in Google Scholar

MacMillan-Crow, L. A.; Crow, J. P. Does more MnSOD mean more hydrogen peroxide? Anticancer Agents Med. Chem. 2011, 11, 178–180.Suche in Google Scholar

Mahammed, A.; Gross Z. Highly efficient catalase activity of metallocorroles. Chem. Commun. (Camb) 2010, 46, 7040–7042.10.1039/c0cc01989eSuche in Google Scholar PubMed

Maroz, A.; Kelso, G. F.; Smith, R. A.; Ware, D. C.; Anderson, R. F. Pulse radiolysis investigation on the mechanism of the catalytic action of Mn(II)-pentaazamacrocycle compounds as superoxide dismutase mimetics. J. Phys. Chem. A 2008, 112, 4929–4935.Suche in Google Scholar

Masini, E.; Bani, D.; Vannacci, A.; Pierpaoli, S.; Mannaioni, P. F.; Comhair, S. A.; Xu, W.; Muscoli, C.; Erzurum, S. C.; Salvemini, D. Reduction of antigen-induced respiratory abnormalities and airway inflammation in sensitized guinea pigs by a superoxide dismutase mimetic. Free Radic. Biol. Med. 2005, 39, 520–531.Suche in Google Scholar

Maybauer, D. M.; Maybauer, M. O.; Szabo, C.; Cox, R. A.; Westphal, M.; Kiss, L.; Horvath, E. M.; Traber, L. D.; Hawkins, H. K.; Salzman, A. L.; et al. The peroxynitrite catalyst WW-85 improves pulmonary function in ovine septic shock. Shock 2011, 35, 148–155.Suche in Google Scholar

McDonald, M. C.; d’Emmanuele di Villa Bianca, R.; Wayman, N. S.; Pinto, A.; Sharpe, M. A.; Cuzzocrea, S.; Chatterjee, P. K.; Thiemermann, C. A superoxide dismutase mimetic with catalase activity (EUK-8) reduces the organ injury in endotoxic shock. Eur. J. Pharmacol. 2003, 466, 181–189.Suche in Google Scholar

Messner, K. R.; Imlay, J. A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J. Biol. Chem. 1999, 274, 10119–10128.Suche in Google Scholar

Miljkovic, J.; Filipovic, M. R.; Otasevic, V.; Stancic, A.; Jankovic, A.; Vucetic, M.; Buzadzic, B.; Lieb, D.; Zimmermann, R.; Korac, A.; et al. Redox modulation of cell signaling in healthy and diabetic animals by pentaazamacrocyclic MnSOD mimics: cross-reactivity with NO as a new therapeutic approach. Antioxid. Redox Signal In revision, 2013.Suche in Google Scholar

Miriyala, S.; Spasojevic, I.; Tovmasyan, A.; Salvemini, D.; Vujaskovic, Z.; St. Clair, D.; Batinic-Haberle, I. Manganese superoxide dismutase, MnSOD and its mimics. Biochim. Biophys. Acta 2012, 1822, 794–814.Suche in Google Scholar

Monti, D. A.; Mitchell, E.; Bazzan, A. J.; Littman, S.; Zabrecky, G.; Yeo, C. J.; Pillai, M. V.; Newberg, A. B.; Deshmukh, S.; Levine, M. Phase I evaluation of intravenous ascorbic acid in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. PLoS One 2012, 7, e29794.10.1371/journal.pone.0029794Suche in Google Scholar PubMed PubMed Central

Munroe, W.; Kingsley, C.; Durazo, A.; Gralla, E. B.; Imlay, J. A.; Srinivasan, C.; Valentine, J. S. Only one of a wide assortment of manganese-containing SOD mimicking compounds rescues the slow aerobic growth phenotypes of both Escherichia coli and Saccharomyces cerevisiae strains lacking superoxide dismutase enzymes. J. Inorg. Biochem. 2007, 101, 1875–1882.Suche in Google Scholar

Murphy, M. P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta 2008, 1777, 1028–1031.10.1016/j.bbabio.2008.03.029Suche in Google Scholar PubMed

Murphy, M. P.; Smith, R. A. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 629–656.Suche in Google Scholar

Murphy, C. K.; Fey, E. G.; Watkins, B. A.; Wong, V.; Rothstein, D.; Sonis, S. T. Efficacy of superoxide dismutase mimetic M40403 in attenuating radiation-induced oral mucositis in hamsters. Clin. Cancer Res. 2008, 14, 4292–4297.Suche in Google Scholar

Muscoli, C.; Cuzzocrea, S.; Ndengele, M. M.; Mollace, V.; Porreca, F.; Fabrizi, F.; Esposito, E.; Masini, E.; Matuschak, G. M.; Salvemini, D. Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. J. Clin. Invest. 2007, 117, 3530–3539.Suche in Google Scholar

Nonn, L.; Berggren, M.; Powis, G. Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol. Cancer Res. 2003, 1, 682–689.Suche in Google Scholar

Oberley, L. W.; Leuthauser, S. W.; Pasternack, R. F.; Oberley, T. D.; Schutt, L.; Sorenson, J. R. Anticancer activity of metal compounds with superoxide dismutase activity. Agents Actions 1984, 5, 535–538.Suche in Google Scholar

Okado-Matsumoto, A.; Fridovich, I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J. Biol. Chem. 2001, 276, 38388–38393.Suche in Google Scholar

Okado-Matsumoto, A.; Batinic-Haberle, I.; Fridovich, I. Complementation of SOD-deficient Escherichia coli by manganese porphyrin mimics of superoxide dismutase activity. Free Radic. Biol. Med. 2004, 37, 401–410.Suche in Google Scholar

Okun, Z; Gross, Z. Fine tuning the reactivity of corrole-based catalytic antioxidants. Inorg. Chem. 2012, 51, 8083–8090.Suche in Google Scholar

Okun, Z.; Kupershmidt, L.; Amit, T.; Mandel, S.; Bar-Am, O.; Youdim, M. B.; Gross, Z. Manganese corroles prevent intracellular nitration and subsequent death of insulin-producing cells. ACS Chem. Biol. 2009, 4, 910–914.Suche in Google Scholar

Orrell, R. W. AEOL-10150 (Aeolus). Curr. Opin. Investig. Drugs 2006, 7, 70–80.Suche in Google Scholar

Otasevic, V.; Korac, A.; Vucetic, M.; Macanovic, B.; Garalejic, E.; Ivanovic-Burmazovic, I.; Filipovic, M. R.; Buzadzic, B.; Stancic, A.; Jankovic, A.; et al. Is manganese (II) pentaazamacrocyclic superoxide dismutase mimic beneficial for human sperm mitochondria function and motility? Antioxid Redox Signal 2013, 18, 170–178.Suche in Google Scholar

Padayatty, S. J.; Levine, M. Reevaluation of ascorbate in cancer treatment: emerging evidence, open minds and serendipity. J. Am. Coll. Nutr. 2000, 19, 423–425.Suche in Google Scholar

Padayatty, S. J.; Sun, H.; Wang, Y.; Riordan, H. D.; Hewitt, S. M.; Katz, A.; Wesley, R. A.; Levine, M. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann. Intern. Med. 2004, 140, 533–537.Suche in Google Scholar

Pasternack, R. F.; Halliwell, B. Superoxide dismutase activities of an iron porphyrin and other iron complexes. J. Am. Chem. Soc. 1979, 101, 1026–1031.Suche in Google Scholar

Pasternack, R. F.; Banth, A.; Pasternack, J. M.; Johnson, C. S. Catalysis of the disproportionation of superoxide by metalloporphyrins. III. J. Inorg. Biochem. 1981, 15, 261–267.Suche in Google Scholar

Pate, K.; Dunham, K.; Padgett, L.; Tse, H.; Floyd, C.; Crapo, J. MnTnBuOE-2-PyP5+ is neuroprotective following acute cervical spinal cord injury in rats. Free Radic. Biol. Med. 2012, 53, S114.Suche in Google Scholar

Peretz, P.; Solomon, D.; Weinraub, D.; Faraggi, M. Chemical properties of water-soluble porphyrins 3. The reaction of superoxide radicals with some metalloporphyrins. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1982, 42, 449–456.Suche in Google Scholar

Pieper, G. M.; Nilakantan, V.; Chen, M.; Zhou, J.; Khanna, A. K.; Henderson, J. D., Jr.; Johnson, C. P.; Roza, A. M.; Szabo, C. Protective mechanisms of a metalloporphyrinic peroxynitrite decomposition catalyst, WW85, in rat cardiac transplants. J. Pharmacol. Exp. Ther. 2005, 314, 53–60.Suche in Google Scholar

Pirmohamed, T.; Dowding, J. M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A. S.; King, J. E.; Seal, S.; Self, W. T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. (Camb) 2010, 46, 2736–2738.Suche in Google Scholar

Quijano, C.; Hernandez-Saavedra, D.; Castro, L.; McCord, J. M.; Freeman, B. A.; Radi, R. Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J. Biol. Chem. 2001, 276, 11631–11638.Suche in Google Scholar

Radovits, T.; Beller, C. J.; Groves, J. T.; Merkely, B.; Karck, M.; Szabo, C.; Szabo, G. Effects of FP15, a peroxynitrite decomposition catalyst on cardiac and pulmonary function after cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 2012, 41, 391–396..Suche in Google Scholar

Rajic, Z.; Tovmasyan, A.; Spasojevic, I.; Sheng, H.; Lu, M.; Li, A. M.; Gralla, E. B.; Warner, D. S.; Benov, L.; Batinic-Haberle, I. A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb potency and lipophilicity with low toxicity. Free Radic. Biol. Med. 2012, 52, 1828–1834.Suche in Google Scholar

Rawal, M.; Schroeder, S. R.; Wagner, B. A.; Cushing, C. M.; Welsh, J. L.; Button, A. M.; Du, J.; Sibenaller, Z. A.; Buettner, G. R.; Cullen, JJ. Manganoporphyrins Increase Ascorbate-Induced Cytotoxicity by Enhancing H2O2 Generation. Cancer Res 2013, 73, 5232–5241.Suche in Google Scholar

Reboucas, J. S.; DeFreitas-Silva, G.; Spasojevic, I.; Idemori, Y. M.; Benov, L.; Batinic-Haberle, I. Impact of electrostatics in redox modulation of oxidative stress by Mn porphyrins: protection of SOD-deficient Escherichia coli via alternative mechanism where Mn porphyrin acts as a Mn carrier. Free Radic. Biol. Med. 2008a, 45, 201–210.Suche in Google Scholar

Reboucas, J. S.; Spasojevic, I.; Batinic-Haberle, I. Pure manganese(III) 5,10,15,20-tetrakis(4-benzoic acid)porphyrin (MnTBAP) is not a superoxide dismutase mimic in aqueous systems: a case of structure-activity relationship as a watchdog mechanism in experimental therapeutics and biology. J. Biol. Inorg. Chem. 2008b, 13, 289–302.Suche in Google Scholar

Reboucas, J. S.; Spasojevic, I.; Batinic-Haberle, I. Quality of potent Mn porphyrin-based SOD mimics and peroxynitrite scavengers for pre-clinical mechanistic/therapeutic purposes. J. Pharm. Biomed. Anal. 2008c, 48, 1046–1049.Suche in Google Scholar

Riley, D. P. Rational Design of Synthetic Enzymes and Their Potential Utility as Human Pharmaceuticals: Development of Manganese(II)-based Superoxide Dismutase Mimics. In Advances in Supramolecular Chemistry, Gokel, G. W., Ed. JAI Press Inc.,: Stanford, 2000, pp 217–244.Suche in Google Scholar

Riley, D. P.; Lennon, P. J.; Neumann, W. L.; Weiss, R. H. Toward the rational design of superoxide dismutase mimics: mechanistic studies for the elucidation of substituent effects on the catalytic activity of macrocyclic manganese(II) complexes. J. Am. Chem. Soc. 1997, 119, 6522–6528.Suche in Google Scholar

Riordan, H. D.; Riordan, N. H.; Jackson, J. A.; Casciari, J. J.; Hunninghake, R.; Gonzalez, M. J.; Mora, E. M.; Miranda-Massari, J. R.; Rosario, N.; Rivera, A. Intravenous vitamin C as a chemotherapy agent: a report on clinical cases. P R Health Sci. J. 2004, 23, 115–118.Suche in Google Scholar

Roth, J. A. Homeostatic and toxic mechanisms regulating manganese uptake; retention; and elimination. Biol. Res. 2006, 39, 45–57.Suche in Google Scholar

Salvemini, D.; Wang, Z. Q.; Zweier, J. L.; Samouilov, A.; Macarthur, H.; Misko, T. P.; Currie, M. G.; Cuzzocrea, S.; Sikorski, J. A.; Riley, D. P. A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science 1999, 286, 304–306.Suche in Google Scholar

Sampson, N.; Koziel, R.; Zenzmaier, C.; Bubendorf, L.; Plas, E.; Jansen-Durr, P.; Berger, P. ROS signaling by NOX4 drives fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma. Mol. Endocrinol. 2011, 25, 503–515.Suche in Google Scholar

Sharpe, M. A.; Ollosson, R.; Stewart, V. C.; Clark, J. B. Oxidation of nitric oxide by oxomanganese-salen complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics. Biochemical. J. 2002, 366, 97–107.Suche in Google Scholar

Shen, K. K.; Ji, L. L.; Chen, Y.; Yu, Q. M.; Wang, Z. T. Influence of glutathione levels and activity of glutathione-related enzymes in the brains of tumor-bearing mice. Biosci. Trends 2011, 5, 30–37.Suche in Google Scholar

Sheng, H.; Enghild, J. J.; Bowler, R.; Patel, M.; Batinic-Haberle, I.; Calvi, C. L.; Day, B. J.; Pearlstein, R. D.; Crapo, J. D.; Warner, D. S. Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia. Free Radic. Biol. Med. 2002, 33, 947–961.Suche in Google Scholar

Sheng, H.; Spasojevic, I.; Tse, H. M.; Jung, J. Y.; Hong, J.; Zhang, Z.; Piganelli, J. D.; Batinic-Haberle, I.; Warner, D. S. Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-Hexylpyridylporphyrin, MnTnHex-2-PyP: Rodent models of ischemic stroke and subarachnoid hemorrhage. J. Pharmacol. Exp. Ther. 2011, 338, 906–916.Suche in Google Scholar

Sheng, H.; Chaparro, R. E.; Sasaki, T.; Izutsu, M.; Pearlstein, R. D.; Tovmasyan, A.; Warner, D. S. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal 2013, DOI: 10.1089/ars.2013.5413.10.1089/ars.2013.5413Suche in Google Scholar PubMed

Shimanovich, R.; Groves, J. T. Mechanisms of peroxynitrite decomposition catalyzed by FeTMPS, a bioactive sulfonated iron porphyrin. Arch. Biochem. Biophys. 2001, 387, 307–317.Suche in Google Scholar

Singh, S.; Kumar, A.; Karakoti, A.; Seal, S.; Self, W. T. Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol. Biosyst. 2010, 6, 1813–1820.Suche in Google Scholar

Smith, R. M.; Martell, A. E. Critical Stability Constants; Plenum Press: New York, 1989.10.1007/978-1-4615-6764-6Suche in Google Scholar

Soriano, F. G.; Lorigados, C. B.; Pacher, P.; Szabo, C. Effects of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Shock 2011, 35, 560–566.Suche in Google Scholar

Sorokina, L. V.; Solyanik, G. I.; Pyatchanina, T. V. The evaluation of prooxidant and antioxidant state of two variants of lewis lung carcinoma: a comparative study. Exp. Oncol. 2010, 32, 249–253.Suche in Google Scholar

Spasojevic, I.; Batinic-Haberle, I. Superoxide Dismutase Mimics. In Principles of Free Radical Biomedicine. Pantopoulos, K., Schipper, H., Eds. Nova Science Publishers: Hauppauge, N.Y., 2010.Suche in Google Scholar

Spasojevic, I.; Batinic-Haberle, I.; Fridovich, I. Nitrosylation of manganese(II) tetrakis(N-ethylpyridinium-2-yl)porphyrin: a simple and sensitive spectrophotometric assay for nitric oxide. Nitric Oxide 2000, 4, 526–533.Suche in Google Scholar

Spasojevic, I.; Batinic-Haberle, I.; Stevens, R. D.; Hambright, P.; Thorpe, A. N.; Grodkowski, J.; Neta, P.; Fridovich, I. Manganese(III) biliverdin IX dimethyl ester: A powerful catalytic scavenger of superoxide employing the Mn(III)/Mn(IV) redox couple. Inorg. Chem. 2001, 40, 726–739.Suche in Google Scholar

Spasojevic, I.; Batinic-Haberle, I.; Reboucas, J. S.; Idemori, Y. M.; Fridovich, I. Electrostatic contribution in the catalysis of O2*- dismutation by superoxide dismutase mimics. MnIIITE-2-PyP5+ versus MnIIIBr8T-2-PyP+. J. Biol. Chem. 2003, 278, 6831–6837.Suche in Google Scholar

Spasojevic, I.; Chen, Y.; Noel, T. J.; Yu, Y.; Cole, M. P.; Zhang, L.; Zhao, Y.; St. Clair, D. K.; Batinic-Haberle, I. Mn porphyrin-based superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+, targets mouse heart mitochondria. Free Radic. Biol. Med. 2007, 42, 1193–1200.Suche in Google Scholar

Spasojevic, I.; Chen, Y.; Noel, T. J.; Fan, P.; Zhang, L.; Reboucas, J. S.; St. Clair, D. K.; Batinic-Haberle, I. Pharmacokinetics of the potent redox-modulating manganese porphyrin, MnTE-2-PyP(5+), in plasma and major organs of B6C3F1 mice. Free Radic. Biol. Med. 2008, 45, 943–949.Suche in Google Scholar

Spasojevic, I.; Li, A.; Tovmasyan, A.; Rajic, Z.; Salvemini, D.; St. Clair, D.; Valentine, J. S.; Vujaskovic, Z.; Gralla, E. B.; Batinic-Haberle, I. Accumulation of porphyrin-based SOD mimics in mitochondria is proportional to their lipophilicity: S. cerevisiae study of ortho Mn(III) N-alkylpyridylporphyrins. Free Radic. Biol. Med. 2010, 49, S199.Suche in Google Scholar

Spasojevic, I; Miryala, S; Tovmasyan, A; Salvemini, D; Vujaskovic, Z; Batinic-Haberle, I; St. Clair, D. Lipophilicity of Mn(III) N-alkylpyridylporphyrins dominates their accumulation within mitochondria and therefore in vivo efficacy. A mouse study. Free Radic. Biol. Med. 2011, 51, S98.Suche in Google Scholar

Suganuma, M.; Saha, A.; Fujiki, H. New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci. 2011, 102, 317–323.Suche in Google Scholar

Szabo, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug. Discov. 2007, 6, 662–680.Suche in Google Scholar

Szabo, G.; Loganathan, S.; Merkely, B.; Groves, J. T.; Karck, M.; Szabo, C.; Radovits, T. Catalytic peroxynitrite decomposition improves reperfusion injury after heart transplantation. J. Thorac. Cardiovasc. Surg. 2012, 143, 1443–1449.Suche in Google Scholar

Tantra, R.; Cackett, A.; Peck, R.; Gohil, D.; Snowden, J. Measurement of redox potential in nanoecotoxicological investigations. J. Toxicol. 2012, 270651.10.1155/2012/270651Suche in Google Scholar PubMed PubMed Central

Tarnuzzer, R. W.; Colon, J.; Patil, S.; Seal, S. Vacancy engineered ceria nanostructures for protection from radiation induced cellular damage. Nano. Lett. 2005, 5, 2573–2577.Suche in Google Scholar

Thompson, J. S.; Chu, Y.; Glass, J.; Tapp, A. A.; Brown, S. A. The manganese superoxide dismutase mimetic, M40403, protects adult mice from lethal total body irradiation. Free Radic. Res. 2010, 44, 529–540.Suche in Google Scholar

Tian, J.; Peehl, D. M.; Knox, S. J. Metalloporphyrin synergizes with ascorbic acid to inhibit cancer cell growth through fenton chemistry. Cancer Biother. Radiopharm. 2010, 25, 439–448.Suche in Google Scholar

Tovmasyan, A. G.; Rajic, Z.; Spasojevic, I.; Reboucas, J. S.; Chen, X.; Salvemini, D.; Sheng, H.; Warner, D. S.; Benov, L.; Batinic-Haberle, I. Methoxy-derivatization of alkyl chains increases the in vivo efficacy of cationic Mn porphyrins. Synthesis, characterization, SOD-like activity, and SOD-deficient E. coli study of meta Mn(III) N-methoxyalkylpyridylporphyrins. Dalton Trans. 2011, 40, 4111–4121.Suche in Google Scholar

Tovmasyan, A.; Weitner, T.; Roberts, E.; Jaramillo, M.; Spasojevic, I.; Leong, K.; Tome, M.; Benov, L.; Batinic-Haberle, I. Understanding differences in mechanisms of action of Fe vs Mn porphyrins: comparison of their reactivities towards cellular reductants and reactive species. Free Radic. Biol. Med. 2012, 53, S120.Suche in Google Scholar

Tovmasyan, A.; Reboucas, J. S.; Benov, L.T. Simple biological systems for assessing the activity of SOD mimics. Antioxid Redox Signal 2013a, DOI: 10.1089/ars.2013.5576.10.1089/ars.2013.5576Suche in Google Scholar PubMed PubMed Central

Tovmasyan, A.; Sheng, H.; Weitner, T.; Arulpragasam, A.; Lu, M.; Warner, D. S.; Vujaskovic, Z.; Spasojevic, I.; Batinic-Haberle, I. Design, mechanism of action, bioavailability and therapeutic effects of mn porphyrin-based redox modulators. Med. Princ. Pract. 2013b, 22, 103–130.Suche in Google Scholar

Tovmasyan, A.; Weitner, T.; Jaramillo, M.; Wedmann, R.; Roberts, E.; Leong, K. W.; Filipovic, M.; Ivanovic-Burmazovic, I.; Benov, L.; Tome, M.; et al. We have come a long way with Mn porphyrins: from superoxide dismutation to H2O2-driven pathways. Free Rad. Biol. Med., 2013c, 65, S133.10.1016/j.freeradbiomed.2013.10.731Suche in Google Scholar

Tovmasyan, A.; Weitner, T.; Sheng, H.; Lu, M.; Rajic, Z.; Warner, D. S.; Spasojevic, I.; Reboucas, J. S.; Benov, L.; Batinic-Haberle, I. Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology. Inorg. Chem. 2013d, 52, 5677–5691.Suche in Google Scholar

Tse, H. M.; Milton, M. J.; Piganelli, J. D. Mechanistic analysis of the immunomodulatory effects of a catalytic antioxidant on antigen-presenting cells: implication for their use in targeting oxidation-reduction reactions in innate immunity. Free Radic. Biol. Med. 2004, 36, 233–247.Suche in Google Scholar

van Empel, V. P.; Bertrand, A. T.; van Oort, R. J.; van der Nagel, R.; Engelen, M.; van Rijen, H. V.; Doevendans, P. A.; Crijns, H. J.; Ackerman, S. L.; Sluiter, W.; et al. EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J. Am. Coll. Cardiol. 2006, 48, 824–832.Suche in Google Scholar

Viani, G. A.; Manta, G. B.; Fonseca, E. C.; De Fendi, L. I.; Afonso, S. L.; Stefano, E. J. Whole brain radiotherapy with radiosensitizer for brain metastases. J. Exp. Clin. Cancer Res. 2009, 28, 1.Suche in Google Scholar

Wang, M.; Kirk, J. S.; Venkataraman, S.; Domann, F. E.; Zhang, H. J.; Schafer, F. Q.; Flanagan, S. W.; Weydert, C. J.; Spitz, D. R.; Buettner, G. R.; et al. Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. Oncogene 2005, 24, 8154–8166.Suche in Google Scholar

Weinraub, D.; Peretz, P.; Faraggi, M. Chemical properties of water-soluble porphyrins. 1. Equilibriums between some ligands and iron(III) tetrakis(4-N-methylpyridyl)porphyrin. J. Phys. Chem. A 1982, 86, 1839–1842.Suche in Google Scholar

Weinraub, D.; Levy, P.; Faraggi, M. Chemical properties of water-soluble porphyrins. 5. Reactions of some manganese (III) porphyrins with the superoxide and other reducing radicals. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1986, 50, 649–658.Suche in Google Scholar

Weitner, T.; Kos, I.; Sheng, H.; Tovmasyan, A.; Reboucas, J. S.; Fan, P.; Warner, D. S.; Vujaskovic, Z.; Batinic-Haberle, I.; Spasojevic, I. Comprehensive pharmacokinetic studies and oral bioavailability of two Mn porphyrin-based SOD mimics, MnTE-2-PyP(5+) and MnTnHex-2-PyP(5+). Free Radic. Biol. Med. 2013, 58, 73–80.Suche in Google Scholar

Welsh, J. J.; Du, J.; Sibenaller, Z. A.; Kalen, A. L.; Wagner, B. A.; Allen, B. G.; Spitz, D. R.; Goswami, P. C.; Buettner, G. R.; Cullen, J. J. Ascorbate is a radiosensitizer in pancreatic caner. Free Rad. Biol. Med. 2012, 53, S52.Suche in Google Scholar

Welsh, J. L.; Wagner, B. A.; van’t Erve, T. J.; Zehr, P. S.; Berg, D. J.; Halfdanarson, T. R.; Yee, N. S.; Bodeker, K. L.; Du, J.; Roberts, L. J., 2nd; et al. Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): results from a phase I clinical trial. Cancer Chemother. Pharmacol. 2013, 71, 765–775.Suche in Google Scholar

Winterbourn, C. C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochim. Biophys. Acta 2013, DOI: 10.1016/j.bbagen.2013.05.004.10.1016/j.bbagen.2013.05.004Suche in Google Scholar PubMed

Winterbourn, C. C; Peskin, A. V.; Parsons-Mair, H. N. Thiol oxidase activity of copper, zinc superoxide dismutase. J. Biol. Chem. 2002, 277, 1906–1911.Suche in Google Scholar

Xu, Y.; Liu, B.; Zweier, J. L.; He, G. Formation of hydrogen peroxide and reduction of peroxynitrite via dismutation of superoxide at reperfusion enhances myocardial blood flow and oxygen consumption in postischemic mouse heart. J. Pharmacol. Exp. Ther. 2008, 327, 402–410.Suche in Google Scholar

Ye, X.; Fels, D.; Tovmasyan, A.; Aird, K. M.; Dedeugd, C.; Allensworth, J. L.; Kos, I.; Park, W.; Spasojevic, I; Devi, G. R.; et al. Cytotoxic effects of Mn(III) N-alkylpyridylporphyrins in the presence of cellular reductant, ascorbate. Free Radic. Res. 2011, 45, 1289–1306.Suche in Google Scholar

Zhao, Y.; Xue, Y.; Oberley, T. D.; Kiningham, K. K.; Lin, S. M.; Yen, H. C.; Majima, H.; Hines, J; St. Clair, D. Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res. 2001, 61, 6082–6088.Suche in Google Scholar

Zhao, Y.; Chaiswing, L.; Oberley, T. D.; Batinic-Haberle, I.; St. Clair, W.; Epstein, C. J.; St. Clair, D. A mechanism-based antioxidant approach for the reduction of skin carcinogenesis. Cancer Res. 2005, 65, 1401–1405.Suche in Google Scholar

Received: 2013-8-10
Accepted: 2013-10-30
Published Online: 2014-01-08
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/irm-2013-0004/html?lang=de
Button zum nach oben scrollen