Startseite Macrophage activation by apoptotic cells
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Macrophage activation by apoptotic cells

  • Bernhard Brüne EMAIL logo und Andreas von Knethen
Veröffentlicht/Copyright: 9. September 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Macrophages sense exogenous/endogenous danger signals due to their high functional plasticity and adjust their output signals accordingly. These comprise immune responses with the formation of reactive oxygen species, nitric oxide and pro-inflammatory cytokines, with the assumption that reactive species compose a redox signalling network. However, alternatively polarised macrophages suppress toxic radical formation, producing anti-inflammatory signatures associated with tissue repair, immune modulation, and angiogenesis. To change their mediator profile, we describe macrophage subsets and their response to apoptotic cells, focusing on reactive oxygen/nitrogen species and signalling mechanisms, and how apoptotic cells polarise macrophages to adopt an immune-regulatory, pro-angiogenic, and tumour-promoting phenotype.


Corresponding author: Bernhard Brüne, Institute of Biochemistry I – Pathobiochemistry, Faculty of Medicine, Goethe University, Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany, e-mail:

We apologise to researchers whose primary observations, which form the basis of current knowledge in the field, could not be cited due to space limitations, or have been acknowledged indirectly, by referring to current reviews. Our work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 815, SFB 1039, BR999), Deutsche Krebshilfe (109599), Translational Research Innovation Pharma (TRIP), the Hans Kröner-Graduate School, and the Sander Foundation (2013.036.1).

References

Ariel, A.; Serhan, C. N. New Lives Given by Cell death: macrophage differentiation following their encounter with apoptotic leukocytes during the resolution of inflammation. Front. Immunol.2012, 3, 4.Suche in Google Scholar

Asada, K.; Sasaki, S.; Suda, T.; Chida, K.; Nakamura, H. Antiinflammatory roles of peroxisome proliferator-activated receptor gamma in human alveolar macrophages. Am. J. Respir. Crit. Care Med.2004, 169, 195–200.Suche in Google Scholar

Auffray, C.; Sieweke, M. H.; Geissmann, F. Blood onocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 2009, 27, 669–692.Suche in Google Scholar

Barra, V.; Kuhn, A. M.; von Knethen, A.; Weigert, A.; Brune, B. Apoptotic cell-derived factors induce arginase II expression in murine macrophages by activating ERK5/CREB. Cell. Mol. Life Sci. 2011, 68, 1815–1827.Suche in Google Scholar

Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol.2007, 81, 1–5.Suche in Google Scholar

Brecht, K.; Weigert, A.; Hu, J.; Popp, R.; Fisslthaler, B.; Korff, T.; Fleming, I.; Geisslinger, G.; Brune, B. Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. FASEB J.2011, 25, 2408–2417.Suche in Google Scholar

Brune, B.; Zhou, J. Nitric oxide and superoxide: interference with hypoxic signaling. Cardiovasc. Res. 2007, 75, 275–282.Suche in Google Scholar

Brune, B.; Dehne, N.; Grossmann, N.; Jung, M.; Namgaladze, D.; Schmid, T.; von Knethen, A.; Weigert, A. Redox control of inflammation in macrophages. antioxid. Redox Signal. 2013, 18, 595–637.Suche in Google Scholar

Burgermeister, E.; Chuderland, D.; Hanoch, T.; Meyer, M.; Liscovitch, M.; Seger, R. Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor g. Mol. Cell. Biol.2007, 27, 803–817.Suche in Google Scholar

Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA1998, 95, 11715–11720.Suche in Google Scholar

Choi, S. H.; Aid, S.; Kim, H. W.; Jackson, S. H.; Bosetti, F. Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J. Neurochem. 2012, 120, 292–301.Suche in Google Scholar

Chowdhury, R.; Flashman, E.; Mecinovic, J.; Kramer, H. B.; Kessler, B. M.; Frapart, Y. M.; Boucher, J. L.; Clifton, I. J.; McDonough, M. A.; Schofield, C. J. Studies on the reaction of nitric oxide with the hypoxia-inducible factor prolyl hydroxylase domain 2 (EGLN1). J. Mol. Biol.2011, 410, 268–279.Suche in Google Scholar

Corzo, C. A.; Condamine, T.; Lu, L.; Cotter, M. J.; Youn, J. I.; Cheng, P.; Cho, H. I.; Celis, E.; Quiceno, D. G.; Padhya, T.; et al. HIF-1a regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 2010, 207, 2439–2453.Suche in Google Scholar

Dehne, N.; Brune, B. Sensors, transmitters, and targets in mitochondrial oxygen shortage-a hypoxia-inducible factor relay story. Antioxid. Redox Signal. 2012, published ahead of print; DOI: 10.1089/ars.20124776.Suche in Google Scholar

Doedens, A. L.; Stockmann, C.; Rubinstein, M. P.; Liao, D.; Zhang, N.; DeNardo, D. G.; Coussens, L. M.; Karin, M.; Goldrath, A. W.; Johnson, R. S. Macrophage expression of hypoxia-inducible factor-1 a suppresses T-cell function and promotes tumor progression. Cancer Res. 2010, 70, 7465–7475.Suche in Google Scholar

Feng, B.; Yao, P. M.; Li, Y.; Devlin, C. M.; Zhang, D.; Harding, H. P.; Sweeney, M.; Rong, J. X.; Kuriakose, G.; Fisher, E. A.; et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat. Cell Biol. 2003, 5, 781–792.Suche in Google Scholar

Fernandez-Boyanapalli, R. F.; Frasch, S. C.; McPhillips, K.; Vandivier, R.W.; Harry, B. L.; Riches, D. W.; Henson, P. M.; Bratton, D. L. Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4. Blood2009, 113, 2047–2055.Suche in Google Scholar

Fernandez-Boyanapalli, R.; Frasch, S. C.; Riches, D. W.; Vandivier, R. W.; Henson, P. M.; Bratton, D. L. PPARg activation normalizes resolution of acute sterile inflammation in murine chronic granulomatous disease. Blood2010, 116, 4512–4522.Suche in Google Scholar

Fontayne, A.; Dang, P. M.; Gougerot-Pocidalo, M. A.; El-Benna, J. Phosphorylation of p47phox sites by PKC a, b II, d, and z: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry2002, 41, 7743–7750.Suche in Google Scholar

Forman, H. J.; Torres, M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am. J. Respir. Crit. Care Med. 2002, 166, S4–S8.Suche in Google Scholar

Frieler, R. A.; Ramnarayanan, S.; Mortensen, R. M. Nuclear receptor control of opposing macrophage phenotypes in cardiovascular disease. Front. Biosci.2012, 17, 1917–1930.Suche in Google Scholar

Galli, S. J.; Borregaard, N.; Wynn, T. A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol.2011, 12, 1035–1044.Suche in Google Scholar

Gautier, E. L.; Shay, T.; Miller, J.; Greter, M.; Jakubzick, C.; Ivanov, S.; Helft, J.; Chow, A.; Elpek, K. G.; Gordonov, S.; et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 2012, 13, 1118–1128.Suche in Google Scholar

Geissmann, F.; Manz, M. G.; Jung, S.; Sieweke, M. H.; Merad, M.; Ley, K. Development of monocytes, macrophages, and dendritic cells. Science2010, 327, 656–661.Suche in Google Scholar

Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003, 3, 23–35.Suche in Google Scholar

Gotoh, T.; Mori, M. Arginase II downregulates nitric oxide (NO) production and prevents NO-mediated apoptosis in murine macrophage-derived RAW 264.7 cells. J. Cell Biol. 1999, 144, 427–434.Suche in Google Scholar

Greer, S. N.; Metcalf, J. L.; Wang, Y.; Ohh, M. The updated biology of hypoxia-inducible factor. EMBO J. 2012, 31, 2448–2460.Suche in Google Scholar

Gregory, C. D.; Pound, J. D. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J. Pathol. 2011, 223, 177–194.Suche in Google Scholar

Gude, D. R.; Alvarez, S. E.; Paugh, S. W.; Mitra, P.; Yu, J.; Griffiths, R.; Barbour, S. E.; Milstien, S.; Spiegel, S. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 2008, 22, 2629–2638.Suche in Google Scholar

Han, C. Z.; Ravichandran, K. S. Metabolic connections during apoptotic cell engulfment. Cell2011, 147, 1442–1445.Suche in Google Scholar

Herr, B.; Zhou, J.; Werno, C.; Menrad, H.; Namgaladze, D.; Weigert, A.; Dehne, N.; Brune, B. The supernatant of apoptotic cells causes transcriptional activation of hypoxia-inducible factor-1a in macrophages via sphingosine-1-phosphate and transforming growth factor-b. Blood2009, 114, 2140–2148.Suche in Google Scholar

Hughes, J. E.; Srinivasan, S.; Lynch, K. R.; Proia, R. L.; Ferdek, P.; Hedrick, C. C. Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ. Res. 2008, 102, 950–958.Suche in Google Scholar

Hwang, J.; Kleinhenz, D. J.; Lassegue, B.; Griendling, K. K.; Dikalov, S.; Hart, C. M. Peroxisome proliferator-activated receptor-g ligands regulate endothelial membrane superoxide production. Am. J. Physiol. Cell Physiol. 2005, 288, C899–905.Suche in Google Scholar

Janssen, W. J.; Henson, P. M. Cellular regulation of the inflammatory response. Toxicol. Pathol. 2012, 40, 166–173.Suche in Google Scholar

Johann, A. M.; Barra, V.; Kuhn, A. M.; Weigert, A.; von Knethen, A.; Brune, B. Apoptotic cells induce arginase II in macrophages, thereby attenuating NO production. FASEB J.2007, 21, 2704–2712.Suche in Google Scholar

Kaelin, W. G. Jr.; Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell2008, 30, 393–402.Suche in Google Scholar

Kagan, V. E.; Gleiss, B.; Tyurina, Y. Y.; Tyurin, V. A.; Elenstrom-Magnusson, C.; Liu, S. X.; Serinkan, F. B.; Arroyo, A.; Chandra, J.; Orrenius, S.; et al. A role for oxidative stress in apoptosis: oxidation and externalization of phosphatidylserine is required for macrophage clearance of cells undergoing Fas-mediated apoptosis. J. Immunol. 2002, 169, 487–499.Suche in Google Scholar

Kaufmann, S. H. Immunology’s foundation: the 100-year anniversary of the Nobel Prize to Paul Ehrlich and Elie Metchnikoff. Nat. Immunol. 2008, 9, 705–712.Suche in Google Scholar

Krysko, D. V.; Garg, A. D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer2012, 12, 860–875.Suche in Google Scholar

Lawrence, T.; Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 2011, 11, 750–761.Suche in Google Scholar

Leto, T. L.; Morand, S.; Hurt, D.; Ueyama, T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid. Redox Signal. 2009, 11, 2607–2619.Suche in Google Scholar

Loker, E. S.; Adema, C. M., Zhang, S. M.; Kepler, T. B. Invertebrate immune systems-not homogeneous, not simple, not well understood. Immunol. Rev.2004, 198, 10–24.Suche in Google Scholar

Maceyka, M.; Harikumar, K. B.; Milstien, S.; Spiegel, S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol.2012, 22, 50–60.Suche in Google Scholar

Majai, G.; Sarang, Z.; Csomos, K.; Zahuczky, G.; Fesus, L. PPARg-dependent regulation of human macrophages in phagocytosis of apoptotic cells. Eur. J. Immunol.2007, 37, 1343–1354.Suche in Google Scholar

Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol.2002, 23, 549–555.Suche in Google Scholar

Mantovani, A.; Sica, A.; Locati, M. New vistas on macrophage differentiation and activation. Eur. J. Immunol. 2007, 37, 14–16.Suche in Google Scholar

Mosser, D. M.; Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969.Suche in Google Scholar

Munder, M. Arginase: an emerging key player in the mammalian immune system. Br. J. Pharmacol.2009, 158, 638–651.Suche in Google Scholar

Munoz, L. E.; Janko, C.; Schulze, C.; Schorn, C.; Sarter, K.; Schett, G.; Herrmann, M. Autoimmunity and chronic inflammation-two clearance-related steps in the etiopathogenesis of SLE. Autoimmun. Rev. 2010, 10, 38–42.Suche in Google Scholar

Niecknig, H.; Tug, S.; Reyes, B. D.; Kirsch, M.; Fandrey, J.; Berchner-Pfannschmidt, U. Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia. Free Radic. Res. 2012, 46, 705–717.Suche in Google Scholar

Odegaard, J. I.; Ricardo-Gonzalez, R. R.; Goforth, M. H.; Morel, C. R.; Subramanian, V.; Mukundan, L.; Red Eagle, A.; Vats, D.; Brombacher, F.; Ferrante, A. W.; et al. Macrophage-specific PPARg controls alternative activation and improves insulin resistance. Nature2007, 447, 1116–1120.Suche in Google Scholar

Ogden, C. A.; Pound, J. D.; Batth, B. K.; Owens, S.; Johannessen, I.; Wood, K.; Gregory, C. D. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL-10-activated macrophages: implications for Burkitt’s lymphoma. J. Immunol.2005, 174, 3015–3023.Suche in Google Scholar

Olson, N.; van der Vliet, A. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide2011, 25, 125–137.10.1016/j.niox.2010.12.010Suche in Google Scholar PubMed PubMed Central

Peyssonnaux, C.; Datta, V.; Cramer, T.; Doedens, A.; Theodorakis, E. A.; Gallo, R. L.; Hurtado-Ziola, N.; Nizet, V.; Johnson, R. S. HIF-1a expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest.2005, 115, 1806–1815.Suche in Google Scholar

Pyne N. J.; Pyne S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer2010, 10, 489–503.10.1038/nrc2875Suche in Google Scholar PubMed

Sarkar, S.; Maceyka, M.; Hait, N. C.; Paugh, S. W.; Sankala, H.; Milstien, S.; Spiegel, S. Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett.2005, 579, 5313–5317.Suche in Google Scholar

Savill, J.; Fadok, V.; Henson, P.; Haslett, C. Phagocyte recognition of cells undergoing apoptosis. Immunol. Today1993, 14, 131–136.Suche in Google Scholar

Shao, W. H.; Cohen, P. L. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res. Ther. 2011, 13, 202.Suche in Google Scholar

Sica, A.; Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest.2012, 122, 787–795.Suche in Google Scholar

Spiegel, S.; Milstien, S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol.2003, 4, 397–407.Suche in Google Scholar

Stuehr, D. J.; Santolini, J.; Wang, Z. Q.; Wei, C. C.; Adak, S. Update on mechanism and catalytic regulation in the NO synthases. J. Biol. Chem.2004, 279, 36167–36170.Suche in Google Scholar

Tauber, A. I. Metchnikoff and the phagocytosis theory. Nat. Rev. Mol. Cell Biol. 2003, 4, 897–901.Suche in Google Scholar

Thorp, E.; Vaisar T.; Subramanian, M.; Mautner L.; Blobel, C.; Tabas, I. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cd, and p38 mitogen-activated protein kinase (MAPK). J. Biol. Chem. 2011,286, 33335–33344.Suche in Google Scholar

Tyurina, Y. Y.; Kawai, K.; Tyurin, V. A.; Liu, S. X.; Kagan, V. E.; Fabisiak, J. P. The plasma membrane is the site of selective phosphatidylserine oxidation during apoptosis: role of cytochrome c. Antioxid. Redox Signal.2004a, 6, 209–225.Suche in Google Scholar

Tyurina, Y. Y.; Serinkan, F. B.; Tyurin, V. A.; Kini, V.; Yalowich, J. C.; Schroit, A. J.; Fadeel, B.; Kagan, V. E. Lipid antioxidant, etoposide, inhibits phosphatidylserine externalization and macrophage clearance of apoptotic cells by preventing phosphatidylserine oxidation. J. Biol. Chem.2004b, 279, 6056–6064.Suche in Google Scholar

Vandivier, R. W.; Henson, P. M.; Douglas, I. S. Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest2006, 129, 1673–1682.Suche in Google Scholar

Venkataraman, K.; Thangada, S.; Michaud, J.; Oo, M. L.; Ai, Y.; Lee, Y. M.; Wu, M.; Parikh, N. S.; Khan, F.; Proia, R. L.; et al. Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochem. J.2006, 397, 461–471.Suche in Google Scholar

Vignais, P. V. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell. Mol. Life Sci.2002, 59, 1428–1459.Suche in Google Scholar

von Knethen, A.; Brune, B. Activation of peroxisome proliferator-activated receptor g by nitric oxide in monocytes/macrophages down-regulates p47phox and attenuates the respiratory burst. J. Immunol. 2002, 169, 2619–2626.Suche in Google Scholar

von Knethen, A.; Soller, M.; Tzieply, N.; Weigert, A.; Johann, A. M.; Jennewein, C.; Kohl, R.; Brune, B. PPARgamma1 attenuates cytosol to membrane translocation of PKCa to desensitize monocytes/macrophages. J. Cell Biol.2007, 176, 681–694.Suche in Google Scholar

Weigert, A.; Johann, A. M.; von Knethen, A.; Schmidt, H.; Geisslinger, G.; Brune, B. Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood2006, 108, 1635–1642.Suche in Google Scholar

Weigert, A.; Tzieply, N.; von Knethen, A.; Johann, A. M.; Schmidt, H.; Geisslinger, G.; Brune, B. Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate. Mol. Biol. Cell2007, 18, 3810–3819.Suche in Google Scholar

Weigert, A.; Weis, N.; Brune, B. Regulation of macrophage function by sphingosine-1-phosphate. Immunobiology2009, 214, 748–760.Suche in Google Scholar

Weigert, A.; Cremer, S.; Schmidt, M. V.; von Knethen, A.; Angioni, C.; Geisslinger, G.; Brune, B. Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood2010, 115, 3531–3540.Suche in Google Scholar

Weis, N.; Weigert, A.; von Knethen, A.; Brune, B. Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. Mol. Biol. Cell2009, 20, 1280–1288.Suche in Google Scholar

Wink, D. A.; Hines, H. B.; Cheng, R. Y.; Switzer, C. H.; Flores-Santana, W.; Vitek, M. P.; Ridnour, L. A.; Colton, C. A. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol.2011, 89, 873–891.Suche in Google Scholar

Wynn, T. A.; Chawla, A.; Pollard, J. W. Macrophage, biology in development, homeostasis and disease. Nature2013, 496, 445–455.Suche in Google Scholar

Xu, W.; Roos, A.; Schlagwein, N.; Woltman, A. M.; Daha, M. R.; van Kooten, C. IL-10-producing macrophages preferentially clear early apoptotic cells. Blood2006, 107, 4930–4937.Suche in Google Scholar

Yi, L.; Liu, Q.; Orandle, M. S.; Sadiq-Ali, S.; Koontz, S. M.; Choi, U.; Torres-Velez, F. J.; Jackson, S. H. p47(phox) directs murine macrophage cell fate decisions. Am. J. Pathol.2012, 180, 1049–1058.Suche in Google Scholar

Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D. N.; Leenen, P. J.; Liu, Y. J.; MacPherson, G.; Randolph, G. J.; et al. Nomenclature of monocytes and dendritic cells in blood. Blood2010, 116, e74–e80.10.1182/blood-2010-02-258558Suche in Google Scholar PubMed

Zitvogel, L.; Kepp, O.; Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell2010, 140, 798–804.Suche in Google Scholar

Zizzo, G.; Hilliard, B. A.; Monestier, M.; Cohen, P. L. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J. Immunol.2012, 189, 3508–3520.Suche in Google Scholar

Received: 2013-6-11
Accepted: 2013-8-15
Published Online: 2013-09-09
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/irm-2013-0002/html
Button zum nach oben scrollen