Abstract
Texaphyrins, first prepared by Sessler and coworkers in the 1980s, represent early examples of expanded porphyrins. This class of pentaaza, oligopyrrolic macrocycles demonstrates excellent tumor localization and metal-chelating properties. In biological milieus, texaphyrins act as redox mediators and are able to produce reactive oxygen species. Furthermore, texaphyrins have been shown to upregulate zinc in vivo, an important feature that inspired us to develop new zinc ionophores that might allow the same function to be elicited but via a simpler chemical means. In this review, the basic properties of texaphyrins and the zinc ionophores they helped spawn will be discussed in the cadre of developing an understanding that could lead to the preparation of new, redox-active anticancer agents.
This work was supported by the Cancer Prevention and Research Institute of Texas (CPRIT; grant RP 120393 to J.L.S.), the U.S. National Cancer Institute (grant CA 68682 to J.L.S.), and the Robert A. Welch Foundation (grant F-1018 to J.L.S.). All authors contributed either to the writing of this article or to the development of the original reports upon which it is based. The authors declare no competing financial interests. All authors have given approval to the final version of the manuscript.
References
Adams, G. E.; Flockhart, I. R.; Smithen, C. E.; Stratford, I. J.; Wardman, P.; Watts, M. E. A correlation between structures, one-electron reduction potentials, and efficiencies of nitroimidazoles as hypoxic cell radiosensitizers. Radiat. Res. 1976, 67, 9–20.Suche in Google Scholar
Altekruse, S. F.; Kosary, C. L.; Krapcho, M.; Neyman, N.; Aminou, R.; Waldron, W.; Ruhl, J.; Howlader, N.; Tatalovich, Z.; et al. (eds). SEER Cancer Statistics Review, 1975–2007, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2007/, based on November 2009 SEER data submission, posted to the SEER web site, 2010.Suche in Google Scholar
American Cancer Society, In Cancer Facts & Figures 2012; American Cancer Society: Atlanta, GA, 2012.Suche in Google Scholar
Andrews, G. K. Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 2001, 14, 223–237.10.1023/A:1012932712483Suche in Google Scholar
Biaglow, J. E.; Mitchell, J. B.; Held, K. The Importance of peroxide and superoxide un X-ray response. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 665–669.Suche in Google Scholar
Biaglow, J. E.; Donahue, J.; Tuttle, S.; Held, K.; Chrestensen, C.; Mieyal, J. A method for measuring disulfide reduction by cultured mammalian cells: relative contributions of glutathione-dependent and glutathione-independent mechanisms. Anal. Biochem. 2000, 281, 77–86.Suche in Google Scholar
Buettner, G. R. The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 1993, 300, 535–543.Suche in Google Scholar
Bump, E. A.; Brown, J. M. Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol. Ther. 1990, 47, 117–136.Suche in Google Scholar
Byrne, A. T.; Magda, D.; Nguyan, H.; Miles, D.; Boswell, G.; Miller, R. A. Selective tumor localization with motexafin gadolinium (MGd) and motexafin lutetium (MLu) occurs by active transport. Proc. Am. Assoc. Cancer Res. 2003, 44, 393–397.Suche in Google Scholar
Carde, P.; Timmerman, R.; Mehta, M. P.; Koprowski, C. D.; Ford, J.; Tishler, R. B.; Miles, D.; Miller, R. A.; Renschler, M. F. Multicenter phase Ib/II trial of the radiation enhancer motexafin gadolinium in patients with brain metastases. J. Clin. Oncol. 2001, 19, 2074–2083.Suche in Google Scholar
Cherian, M. G.; Jayasurya, A.; Bay, B. H. Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat. Res. 2003, 533, 201–209.Suche in Google Scholar
Costello, L. C.; Franklin, R. B. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol. Cancer 2006, 5: 17.10.1186/1476-4598-5-17Suche in Google Scholar
Costello, L. C.; Franklin, R. B. Zinc is decreased in prostate cancer: an established relationship of prostate cancer! J. Biol. Inorg. Chem. 2011, 16, 3–8.Suche in Google Scholar
Cousins, R. J.; Blanchard, R. K.; Popp, M. P.; Liu, L.; Cao, J.; Moore, J. B.; Green, C. L. A global view of the selectivity of zinc deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc. Natl. Acad. Sci. USA 2003, 100, 6952–6957.Suche in Google Scholar
Doose, C. A.; Ranke, J.; Stock, F.; Bottin-Weber, U.; Jastorff, B. Structure-activity relationships of pyrithiones-IPC-81 toxicity tests with the antifouling biocide zinc pyrithione and structural analogs. Green Chem. 2004, 6, 259–266.Suche in Google Scholar
Dubi, N.; Gheber, L.; Fishman, D.; Sekler, I.; Hershfinkel, M. Extracellular zinc and zinc-citrate, acting through a putative zinc-sensing receptor, regulate growth and survival of prostate cancer cells. Carcinogenesis 2008, 29, 1692–1700.Suche in Google Scholar
Evens, A. M.; Balasubramanian, L.; Gordon, L. Motexafin gadolinium induces oxidative stress and apoptosis in hematologic malignancies. Curr. Treat. Options Oncol. 2005, 6, 289–296.Suche in Google Scholar
Feng, P.; Li, T. L.; Guan, Z. X.; Franklin, R. B.; Costello, L. C. Effect of zinc on prostatic tumorigenicity in nude mice. Ann. NY Acad. Sci. 2003, 1010, 316–320.Suche in Google Scholar
Feng, P.; Li, T.; Guan, Z.; Franklin, R. B.; Costello, L. C. The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol. Cancer 2008, 7, 25–30.Suche in Google Scholar
Franklin, R. B.; Costello, L. C. The important role of the apoptotic effects of zinc in the development of cancers. J. Cell. Biochem. 2009, 106, 750–757.Suche in Google Scholar
Franklin, R. B.; Feng, P.; Milon, B.; Desouki, M. M.; Singh, K. K.; Kajdacsy-Balla, A.; Bagasra, O.; Costello, L. C. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol. Cancer 2005, 4, 32–45.Suche in Google Scholar
Gee, K. R.; Zhou, Z. L.; Ton-That, D.; Sensi, S. L.; Weiss, J. H. Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes. Cell Calcium 2002, 31, 245–251.Suche in Google Scholar
Gibson, W. B.; Jeffcoat, A. R.; Turan, T. S.; Wendt, R. H.; Hughes, P. F.; Twine, M. E. Zinc pyridinethione: serum metabolites of zinc pyridinethione in rabbits, rats, monkeys, and dogs after oral dosing. Toxicol. Appl. Pharmacol. 1982, 62, 237–250.Suche in Google Scholar
Giedroc, D. P.; Chen, X.; Apuy, J. L. Metal response element (MRE)-binding transcription factor–2 (MTF-1): structure, function, and regulation. Antioxid. Redox Signal 2001, 3, 577–596.Suche in Google Scholar
Golovine, K.; Makhov, P.; Uzzo, R. G.; Shaw, T.; Kunkle, D.; Kolenko, V. M. Overexpression of the zinc uptake transporter hZIP1 inhibits nuclear factor-κB and reduces the malignant potential of prostate cancer cells in vitro and in vivo. Clin. Cancer Res. 2008, 14, 5376–5384.Suche in Google Scholar
Guldi, D. M.; Mody, T. D.; Gerasimchuk, N. N.; Magda, D.; Sessler, J. L. Influence of large metal cations on the photophysical properties of texaphyrin, a rigid aromatic chromophore. J. Am. Chem. Soc. 2000, 122, 8289–8298.Suche in Google Scholar
Hasumi, M.; Suzuki, K.; Matsui, H.; Koike, H.; Ito, K.; Yamanaka, H. Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett. 2003, 200, 187–195.Suche in Google Scholar
Hemmi, G. W. Ph.D. Dissertation, The University of Texas at Austin, 1992, pp. 41–43.Suche in Google Scholar
Hirsila, M.; Koivunen, P.; Xu, L.; Seeley, T.; Kivirikko, K. I.; Myllyharju, J. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J. 2005, 19, 1308–1310.Suche in Google Scholar
Jasim, S.; Tjalve, H. Effect of zinc pyridinethione on the tissue disposition of nickel and cadmium in mice. Acta Pharmacol. Toxicol. (Copenhagen) 1986a, 59, 204–208.10.1111/j.1600-0773.1986.tb00155.xSuche in Google Scholar
Jasim, S.; Tjalve, H. Effect of sodium pyridinethione on the uptake and distribution of nickel, cadmium and zinc in pregnant and nonpregnant mice. Toxicology 1986b, 38, 327–350.10.1016/0300-483X(86)90148-4Suche in Google Scholar
Jeffcoat, A. R.; Gibson, W. B.; Rodriguez, P. A.; Turan, T. S.; Hughes, P. F.; Twine, M. E. Zinc pyridinethione: urinary metabolites of zinc pyridinethione in rabbits, rats, monkeys, and dogs after oral dosing. Toxicol. Appl. Pharmacol. 1980, 56, 141–154.Suche in Google Scholar
Johnson, L. A.; Kanak, M. A.; Kajdacsy-Balla, A.; Pestaner, J. P.; Bagasra, O. Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods 2010, 52, 316–321.Suche in Google Scholar
Jungbauer, B. Pharmacyclics’ Xcytrin Gets FDA “Not Approvable” for NSCLC Patients With Brain Metastases, The Pink Sheet, December 2007.Suche in Google Scholar
Kagi, J. H. R.; Schaffer, A. Bichemistry of metallothionein. Biochemistry 1988, 27, 8509–8515.Suche in Google Scholar
Koch, C. J.; Biaglow, J. E. Toxicity, radiation sensitivity modification, and metabolic effects of dehydroascorbate and ascorbate in mammalian cells. J. Cell. Physiol. 1978, 94, 299–306.Suche in Google Scholar
Langmade, S. J.; Ravindra, R.; Daniels, P. J.; Andrews, G. K. The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J. Biol. Chem. 2000, 275, 34803–34809.Suche in Google Scholar
Lecane, P.; Karaman, M. W.; Sirisawad, M.; Naumovski, L.; Miller, R. A.; Hacia, J. G.; Magda, D. Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005, 65, 11676–11688.Suche in Google Scholar
Lichtlen, P.; Schaffner, W. Putting its fingers on stressful situations: the heavy metal-regulatory transcription factor MTF-1. Bioessays 2001, 23, 1010–1017.10.1002/bies.1146Suche in Google Scholar PubMed
Lichtlen, P.; Wang, Y.; Belser, T.; Georgiev, O.; Certa, U.; Sack, R.; Schaffner, W. Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res. 2001, 29, 1514–1523.Suche in Google Scholar
Lin, S.-F.; Wei, H.; Maeder, D.; Franklin, R. B.; Feng, P. Profiling of zinc-altered gene expression in human prostate normal vs. cancer cells: A time course study. J. Nutr. Biochem. 2009, 20, 1000–1012.Suche in Google Scholar
Magda, D.; Lepp, C.; Gerasimchuk, N.; Lee, I.; Sessler, J. L.; Lin, A.; Biaglow, J.; Miller, R. A. Redox cycling by motexafin gadolinium enhances cellular response to ionizing radiation by forming reactive oxygen species. Int. J. Radiat. Biol. Oncol. Phys. 2001, 51, 1025–1036.Suche in Google Scholar
Magda, D.; Lepp, C.; Gerasimchuk, N.; Lecane, P.; Miller, R. A.; Biaglow, J. E.; Sessler, J. L. Motexafin gadolinium reacts with ascorbic acid to produce reactive oxygen species. Chem. Comm. 2002, 2730–2731.10.1039/b208760jSuche in Google Scholar PubMed
Magda, D.; Gerasimchuk, N.; Wang, Z.; Sessler, J. L.; Miller, R. A. Mechanistic studies of motexafin gadolinium (Xcytrin®): a redox active agent that reacts with electron-rich biological substances. In ACS Symposium Series, Vol. 903, Medicinal Inorganic Chemistry. 2005a, pp. 110–136.Suche in Google Scholar
Magda, D.; Lecane, P.; Miller, R. A.; Lepp, C.; Miles, D.; Mesfin, M.; Biaglow, J. E.; Ho, V. V.; Chawannakul, D.; Nagpal, S.; et al. Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005b, 65, 3837–3845.Suche in Google Scholar
Magda, D.; Lecane, P.; Wang, Z.; Hu, W.; Thiemann, P.; Ma, X.; Dranchak, P.; Wang, X.; Lynch, V.; Wei, W.; et al. Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res. 2008, 68, 13, 5318–5325.Suche in Google Scholar
McHaffie, D. R.; Chabot, P.; Dagnault, A.; Suh, J. H.; Fortin, M. A.; Chang, E.; Timmerman, R.; Souhami, L.; Grecula, J.; Nabid, A.; et al. Safety and feasibility of motexafin gadolinium administration with whole brain radiation therapy and stereotactic radiosurgery boost in the treatment of ≤6 brain metastases: a multiinstitutional phase II trial. J. Neurooncol. 2011, 105, 301–308.Suche in Google Scholar
Mehta, M. P.; Shapiro, W. R.; Glantz, M. J.; Patchell, R. A.; Weitzner, M. A.; Meyers, C. A.; Schultz, C. J.; Roa, W. H.; Leibenhaut, M.; Ford, J.; et al. Lead-in phase to randomized trial of motexafin gadolinium and whole-brain radiation for patients with brain metastases: Centralized assessment of magnetic resonance imaging, neurocognitive, and neurologic end points. J. Clin. Oncol. 2002, 20, 3445–3453.Suche in Google Scholar
Mehta, M. P.; Rodrigus, P.; Terhaard, C. H. J.; Rao, A.; Suh, J.; Roa, W.; Souhami, L.; Bezjak, A.; Leibenhaut, M.; Komaki, R.; et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J. Clin. Oncol. 2003, 21, 2529–2536.Suche in Google Scholar
Mikheev, N. B.; Kamenskaya, A. N. Complex formation of the lanthanides and actinides in lower oxidation states. Coord. Chem. Rev. 1991, 109, 1–59.Suche in Google Scholar
Miller, R. A.; Woodburn, K.; Fan, Q.; Renschler, M.; Sessler, J. L.; Koutcher, J. A. In vivo animal studies with gadolinium(III) texaphyrin as a radiation enhancer. Int. J. Radiat. Oncol. 1999, 45, 981–989.Suche in Google Scholar
Mody, T. D.; Fu, L.; Sessler, J. L. Texaphyrins: Synthesis and Development of a Novel Class of Therapeutic Agents. In Progress in Inorganic Chemistry. Karlin, K. D., Ed., J. Wiley & Sons: New York, 2001; Vol. 49, pp. 551–598.Suche in Google Scholar
Preihs, C.; Arambula, J. F.; Magda, D.; Jeong, H.; Yoo, D.; Cheon, J.; Siddik, Z. H.; Sessler, J. L. Recent developments in texaphyrin chemistry and drug discovery. Inorg. Chem. 2013, DOI: 10.1021/ic400226g.10.1021/ic400226gSuche in Google Scholar PubMed PubMed Central
Rosenthal, D. I.; Nurenberg, P.; Becerra, C. R.; Frenkel, E. P.; Carbone, D. P.; Lum, B. L.; Miller, R.; Engel, J.; Young, S.; Miles, D.; et al. A phase I single-dose trial of gadolinium texaphyrin (Gd-Tex), a tumor selective radiation sensitizer detectable by magnetic resonance imaging. Clin. Cancer Res. 1999, 5, 739–745.Suche in Google Scholar
Schofield, C. J.; Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 2004, 5, 343–354.10.1038/nrm1366Suche in Google Scholar PubMed
Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 2003, 3, 721–732.10.1038/nrc1187Suche in Google Scholar PubMed
Sessler, J. L.; Miller, R. A. Texaphyrins. New drugs with diverse clinical applications in radiation and photodynamic therapy. Biochem. Pharmacol. 2000, 59, 733–739.Suche in Google Scholar
Sessler, J. L.; Seidel, D. Synthetic expanded porphyrin chemistry. Angew. Chem. Int. Ed. Engl. 2003, 42, 5134–5175.10.1002/anie.200200561Suche in Google Scholar PubMed
Sessler, J. L.; Hemmi, G.; Mody, T. D.; Murai, T.; Burrell, A.; Young, S. W. Texaphyrins: synthesis and applications. Acc. Chem. Res. 1994, 27, 43–50.Suche in Google Scholar
Sessler, J. L.; Tvermoes, N. A.; Guldi, D. M.; Mody, T. D.; Allen, W. A. One-electron reduction and oxidation studies of the radiation sensitizer gadolinium(III) texaphyrin (PCI-0120) and other water soluble metallotexaphyrins. J. Phys, Chem. A 1999, 103, 787–794.Suche in Google Scholar
Sessler, J. L.; Tvermoes, N. A.; Guldi, D. M.; Hug, G. L.; Mody, T. D.; Magda, D. Pulse radiolytic studies of metallotexaphyrins in the presence of oxygen: Relevance of the equilibrium with superoxide anion to the mechanism of action of the radiation sensitizer motexafin gadolinium (Gd-Tex2+, Xcytrin®). J. Phys. Chem. B 2001, 105, 1452–1457.Suche in Google Scholar
Trock, B. J. Application of metabolomics to prostate cancer. Urol. Oncol. 2011, 29, 572–581.Suche in Google Scholar
Vallee, B. L. Introduction to metallothionein. Method Enzymol. 1991, 205, 3–7.Suche in Google Scholar
Wong, P.-F.; Abubakar, S. High intracellular Zn2+ ions modulate the VHR, ZAP-70 and ERK activities of LNCaP prostate cancer cells. Cell Mol. Biol. Lett. 2008, 13, 375–390.Suche in Google Scholar
Woodburn, K. Intracellular localization of the radiation sensitizer motexafin gadolinium using interferometric Fourier fluorescence microscopy. J. Pharmacol. Exp. Therapeutics 2001, 297, 888–894.Suche in Google Scholar
Yang, J.; Yu, H.; Sun, S.; Zhang, L.; Das, U. N.; Ruan, H.; He, G.; Shen, S. Mechanism of free Zn2+ enhancing inhibitory effects of EGCG on the growth of PC-3 cells: Interactions with mitochondria. Biol. Trace Elem. Res. 2009, 131, 298–310.Suche in Google Scholar
Yoo, D.; Jeong, H.; Preihs, C.; Choi, J.-S.; Shin, T.-H.; Sessler, J. L.; Cheon, J. Double effector nanoparticles: a synergistic approach to apoptotic hyperthermia. Angew. Chem., Int. Ed. 2012, 51, 12482–12485.Suche in Google Scholar
Young, S. W.; Sidhu, M. K.; Qing, F. Preclinical evaluation of gadolinium(III) texaphyrin complex: a new paramagnetic contrast agent for magnetic resonance imaging. Invest. Radiol. 1994, 29, 330–338.Suche in Google Scholar
Young, S. W.; Quing, F.; Harriman, A.; Sessler, J. L.; Dow, W. C.; Mody, T. D.; Hemmi, G.; Hao, Y.; Miller, R. A. Gadolinium(III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI. Proc. Natl. Acad. Sci. USA 1996, 93, 6610–6615. Correction: Proc. Natl. Acad. Sci. USA 1999, 96, 2569.Suche in Google Scholar
©2013 by Walter de Gruyter Berlin Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Editorial
- Special issue on Medicinal Redox Inorganic Chemistry
- Reviews
- Texaphyrins and water-soluble zinc(II) ionophores: development, mechanism of anticancer activity, and synergistic effects
- Macrophage activation by apoptotic cells
- The redox properties of the unique heme in cystathionine β-synthase
- The complex mechanistic aspects of redox-active compounds, commonly regarded as SOD mimics
- Short Communication
- Standard electrode potentials involving radicals in aqueous solution: inorganic radicals
- Abstracts
- MEDICINAL REDOX INORGANIC CHEMISTRY CONFERENCE 2013
Artikel in diesem Heft
- Cover and Frontmatter
- Editorial
- Special issue on Medicinal Redox Inorganic Chemistry
- Reviews
- Texaphyrins and water-soluble zinc(II) ionophores: development, mechanism of anticancer activity, and synergistic effects
- Macrophage activation by apoptotic cells
- The redox properties of the unique heme in cystathionine β-synthase
- The complex mechanistic aspects of redox-active compounds, commonly regarded as SOD mimics
- Short Communication
- Standard electrode potentials involving radicals in aqueous solution: inorganic radicals
- Abstracts
- MEDICINAL REDOX INORGANIC CHEMISTRY CONFERENCE 2013