Startseite Naturwissenschaften Fluorine chemistry meets liquid ammonia
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fluorine chemistry meets liquid ammonia

  • Florian Kraus EMAIL logo
Veröffentlicht/Copyright: 1. Juli 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Chemistry of metal and non-metal fluorides in liquid ammonia is often severely hampered, due to the low solubility of inorganic fluorides. This can be overcome by applying either strongly oxidizing fluorides, appropriate fluoride ion acceptors, or by the reduction or conversion of fluorides using solvated electrons. The article summarizes the state-of-the-art of the chemistry of inorganic fluorides in liquid ammonia, with special emphasis on compounds of beryllium, silver and uranium.


Corresponding author: Florian Kraus, Arbeitsgruppe Fluorchemie, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany

References

Ahrland, S.; Larsson, R. The complexity of uranyl fluoride. Acta Chem. Scand. 1954, 8, 354–366.Suche in Google Scholar

Ahrland, S.; Larsson, R.; Rosengren, K. On the complex chemistry of the uranyl ion VIII. The complexity of uranyl fluoride. Acta Chem. Scand. 1956, 10, 705–718.Suche in Google Scholar

Andersson, S. Magnesium nitride fluorides. J. Solid State Chem. 1970, 1, 306–309.Suche in Google Scholar

Andrews, L.; Wang, X.; Lindh, R.; Roos, B. O.; Marsden, C. J. Simple NUF3 and PUF3 molecules with triple bonds to uranium. Angew. Chem. 2008, 120, 5446–5450.Suche in Google Scholar

Baer, S. A.; Kraus, F. Cesium fluoride ammonia (3/4) [Cs3F3(NH3)4] and ammonium cesium difluoride [NH4CsF2]. Z. Naturforsch. 2010, 65b, 1177–1184.Suche in Google Scholar

Baldas, J.; Boas, J. F.; Ivanov, Z. E.p.r. evidence for the formation of the six-coordinate pentafluoronitridotechnetate(VI) anion in solution. Transition Met. Chem. 1997, 22, 74–78.Suche in Google Scholar

Bart, S. C.; Meyer, K. Highlights in Uranium Coordination Chemistry. In Structure and Bonding 127: Organometallic and Coordination Chemistry of the Actinides; Springer-Verlag: Berlin, Heidelberg, 2008, pp. 119–176.10.1007/430_2007_081Suche in Google Scholar

Bergstrom, F. W. The action of liquid ammonia solutions of ammonia salts on metallic beryllium. Ammonated beryllium halides and ammonobasic beryllium salts. J. Am. Chem. Soc. 1928, 50, 657–662.Suche in Google Scholar

Berthet, J.-C.; Thuéry, P.; Ephritikhine, M. Polyimido clusters of neodymium and uranium, including a cluster with an M6(μ3-N)8 core. Eur. J. Inorg. Chem. 2008, 5455–5459.10.1002/ejic.200800947Suche in Google Scholar

Berthold, H. J.; Delliehausen, C. Darstellung und röntgenographische Untersuchung höherer Urannitride. Angew. Chem. 1966a, 78, 750–751.Suche in Google Scholar

Berthold, H. J.; Delliehausen, C. siehe 1067. Angew. Chem. Int. Ed. 1966b, 5, 726.Suche in Google Scholar

Berthold, H. J.; Hein, H. G. Über die hochtemperaturammonolyse von UF4. Angew. Chem. 1969, 81, 910.Suche in Google Scholar

Berthold, H. J.; Knecht, H. Ammoniates of uranium trichloride and tetrachloride. Angew. Chem. Int. Ed. 1965a, 4, 431–432.Suche in Google Scholar

Berthold, H. J.; Knecht, H. Hochtemperaturammonolyse von urantrichlorid und urantetrachlorid. Angew. Chem. 1965b, 77, 910.Suche in Google Scholar

Berthold, H. J.; Knecht, H. siehe 1064. Angew. Chem. Int. Ed. 1965c, 4, 433–434.Suche in Google Scholar

Berthold, H. J.; Knecht, H. Über die ammoniakate des urantrichlorids und urantetrachlorids. Angew. Chem. 1965d, 77, 453.Suche in Google Scholar

Berthold, H. J.; Knecht, H. Die Kristallstruktur des uranimidchlorids U(NH)Cl. Z. Anorg. Allg. Chem. 1966a, 348, 50–57.Suche in Google Scholar

Berthold, H. J.; Knecht, H. Über die ammoniakate des urantetrafluorids. 1966b, 53, 305.Suche in Google Scholar

Berthold, H. J.; Knecht, H. Ammoniakate und ammonolyse von urantetrachlorid. Z. Anorg. Allg. Chem. 1969, 366, 249–264.Suche in Google Scholar

Biltz, W. Höhere ammoniakate von halogeniden aus der Eisengruppe. Z. Anorg. Allg. Chem. 1925a, 148, 145–151.Suche in Google Scholar

Biltz, W. Über ammoniakate der cuprihalogenide. Z. Anorg. Allg. Chem. 1925b, 148, 207–216.Suche in Google Scholar

Biltz, W.; Fetkenheuer, B. Über ammoniakverbindungen der nickelhalogenide. Z. Anorg. Allg. Chem. 1913, 83, 163–176.Suche in Google Scholar

Biltz, W.; Fetkenheuer, B. Über ammoniakverbindungen der halogenide des zweiwertigen Kobalts. Z. Anorg. Allg. Chem. 1914a, 89, 97–133.Suche in Google Scholar

Biltz, W.; Fetkenheuer, B. Über ammoniakverbindungen der halogenide des zweiwertigen nickels und kobalts und ihre beziehungen zueinander. Z. Anorg. Allg. Chem. 1914b, 89, 134–140.Suche in Google Scholar

Biltz, W.; Fischer, W. Über die ammoniakate der bleihalogenide. Stammverbindungen und mischverbindungen. Z. Anorg. Allg. Chem. 1922, 124, 230–247.Suche in Google Scholar

Biltz, W.; Fischer, W. Über ammoniakate der halogenide des zweiwertigen zinns. Z. Anorg. Allg. Chem. 1923, 129, 1–14.Suche in Google Scholar

Biltz, W.; Hansen, W. Über ammoniakate der alkalimetallhalogenide. Z. Anorg. Allg. Chem. 1923, 127, 1–33.Suche in Google Scholar

Biltz, W.; Hüttig, G. F. Über die ammoniakate der magnesium­halogenide. Z. Anorg. Allg. Chem. 1921, 119, 115–131.Suche in Google Scholar

Biltz, W.; Mau, C. Über die ammoniakate der cadmium- und quecksilberhalogenide. Z. Anorg. Allg. Chem. 1925, 148, 170–191.Suche in Google Scholar

Biltz, W.; Messerknecht, C. Über die ammoniakate der zinkhalogenide. Z. Anorg. Allg. Chem. 1923, 129, 161–175.Suche in Google Scholar

Biltz, W.; Messerknecht, C. Über die ammoniakate der berylliumhalogenide. Z. Anorg. Allg. Chem. 1925, 148, 157–169.Suche in Google Scholar

Biltz, W.; Rahlfs, E. Über reaktionsermöglichung durch gittererweiterung und über ammoniakate der fluoride. Z. Anorg. Allg. Chem. 1927, 166, 351–376.Suche in Google Scholar

Biltz, W.; Stollenwerk, W. Über halogensilberammoniakate. Z. Anorg. Allg. Chem. 1920, 114, 174–202.Suche in Google Scholar

Biltz, W.; Stollenwerk, W. Über die ammoniakate der cupro- und thallohalogenide. Z. Anorg. Allg. Chem. 1921, 119, 97–114.Suche in Google Scholar

Biltz, W.; Wein, W. Über die ammoniakate der aurohalogenide. Z. Anorg. Allg. Chem. 1925, 148, 192–206.Suche in Google Scholar

Brogan, M. A.; Hughes, R. W.; Smith, R. I.; Gregory, D. H. Structural studies of magnesium nitride fluorides by powder neutron diffraction. J. Solid State Chem. 2012, 185, 213–218.Suche in Google Scholar

Brown, H. C.; Johnson, S. Molecular addition compounds. I. The interaction of ammonia with ammonia-boron trifluoride at low temperatures. J. Am. Chem. Soc. 1945, 76, 1978–1979.Suche in Google Scholar

Burk, W. Die reaktion des UCl3 und UBr3 mit NH3. Z. Anorg. Allg. Chem. 1967, 350, 62–69.Suche in Google Scholar

Burk, W. Ammonolysis of uranium halides – ammonolysis reactions of uranium iodide and fluoride. 1969, 9, 233.Suche in Google Scholar

Burk, W.; Naumann, D. Ammonolyse von urantetrachlorid und -tetrabromid. Z. Anorg. Allg. Chem. 1966, 344, 306–315.Suche in Google Scholar

Burk, W.; Naumann, D. Über die ammonolyse von uranhalogeniden: III. Die überführung der urannitridhalogenide in uranmononitrid. 1969, 9, 189.Suche in Google Scholar

Cohen, B.; Hooper, T. R.; Peacock, R. D. The preparation of tetrasulphur tetranitride and thiazyl fluoride from sulfur tetrafluoride. J. Inorg. Nucl. Chem. 1966, 28, 919–920.Suche in Google Scholar

Cotton, A. F.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; 6th Edition. John Wiley & Sons, Inc.: New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 1999.Suche in Google Scholar

Davy, J. BF3 NH3 SiF4. Phil. Trans. 1812, 102, 352.Suche in Google Scholar

Dehnicke, K.; Neumüller, B. Neues aus der chemie des berylliums. Z. Anorg. Allg. Chem. 2008, 634, 2703–2728.Suche in Google Scholar

Dougal, J. C.; Gans, P.; Gill, J. B.; Johnson, L. H. Complexation of noble transition metals in liquid ammonia. Pure Appl. Chem. 1988, 60, 1731–1742.Suche in Google Scholar

Dressel, M. P.; Nogai, S.; Berger, R. J. F.; Schmidbaur, H. Beryllium dichloride coordination by nitrogen donor molecules. Z. Naturforsch. 2003, 58b, 173–182.Suche in Google Scholar

Drozdzynski, J. Tervalent uranium compounds. Coord. Chem. Rev. 2005, 249, 2351–2373.Suche in Google Scholar

Ephritikhine, M. The vitality of uranium molecular chemistry at the dawn of the XXIst century. Dalton Trans. 2006, 21, 2501–2516.Suche in Google Scholar

Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Molecular octa-uranium rings with alternating nitride and azide bridges. 2005, 309, 1835–1838.Suche in Google Scholar

Fawcett, J.; Holloway, J. H.; Laycock, D.; Russel, D. R. Fluoride-ion donor properties of UF2O2 – Preparation and characterization of the adducts of UF2O2*nSbF5 (n=2 or 3) and crystal structure of UF2O2(SbF5)3. J. Chem. Soc. Dalton Trans. 1982, 7, 1355–1360.Suche in Google Scholar

Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Towards uranium catalysts. 2008, 455, 341–349.Suche in Google Scholar

Franklin, E. C. Kraus, C. A. Liquid ammonia as a aolvent. 1898, 20, 820–853.Suche in Google Scholar

Galkin, N. P.; Sudarikov, B. N.; Zaitsev, V. A. Interaction of uranium hexafluoride UF6 with ammonia NH3. At. Energ. 1960, 8, 530–534.Suche in Google Scholar

Gay-Lussac, J. L.; Thenard, J. L. BF3 NH3. Mem. Phys. Chim. Soc. d’Arcueil. 1809, 2, 210–211.Suche in Google Scholar

Göbbels, D.; Meyer, G. Aufbau und abbau von (NH4)[BF4] und H3N-BF3. Z. Anorg. Allg. Chem. 2002, 628, 1799–1805.Suche in Google Scholar

Graves, C. R.; Kiplinger, J. L. Pentavalent uranium chemistry – synthetic pursuit of a rare oxidation state, Chem. Commun. 2009, 26, 3831–3853.Suche in Google Scholar

Grigor’ev, A. I.; Evseeva, N. K.; Sipachev, V. A. Beryllium ammonia. Zh. Strukt. Khim. 1969, 10, 469–473.Suche in Google Scholar

Grigor’ev, A. I.; Sipachev, V. A.; Novoselova, A. V. Beryllium fluoride ammine. Russ. J. Inorg. Chem. 1967, 12, 319–321.Suche in Google Scholar

Han, R.; Parkin, G. Organo beryllium. Inorg. Chem. 1993, 32, 4968–4970.Suche in Google Scholar

Headspith, D. A.; Francesconi, M. G. Transition metal pnictide-halides: A class of under-explored compounds. 2009, 52, 1611–1627.Suche in Google Scholar

Headspith, D. A.; Sullivan, E.; Greaves, C.; Francesconi, M. G. Synthesis and characterization of the quaternary nitride-fluoride Ce2MnN3F2-d. Dalton Trans. 2009, 42, 9273–9279.Suche in Google Scholar

Holleman, A. F.; Wiberg, E. Lehrbuch der anorganischen chemie; 102nd Edition. Walter de Gruyter: Berlin, New York, 2007.10.1515/9783110177701Suche in Google Scholar

Holloway, J. H.; Laycock, D.; Bougon, R. Preparation and characterization of the uranyl fluoride-antimony pentafluoride adduct, UF2O2*4SbF5. J. Chem. Soc. Dalton Trans. 1982, 8, 1635–1636.Suche in Google Scholar

Jacob, E. Metallhexamethoxide. Angew. Chem. Suppl. 1982, 317–330.10.1002/anie.198203170Suche in Google Scholar

Jander, J.; Doetsch, V.; Engelhardt, U.; Fischer, J.; Lafrenz, C.; Nagel, H.; Renz, W.; Türk, G.; von Volkmann, T.; Weber, G. Chemie in nichtwäßrigen ionisierenden lösungsmitteln – chemie in wasserfreiem flüssigem ammoniak; 1st Edition. Friedr. Vieweg & Sohn: Braunschweig, 1966.Suche in Google Scholar

John, G. H.; May, I.; Collison, D.; Helliwell, M. Synthesis, structural and spectroscopic characterization of three di-mu-fluoro-bis[dioxouranyl] complexes. Polyhedron2004, 23, 3097–3103.Suche in Google Scholar

Johnson, J. S.; Kraus, K. A. UO2F2. J. Am. Chem. Soc. 1952, 74, 4436–4439.10.1021/ja01137a060Suche in Google Scholar

Johnson, J. S.; Kraus, K. A.; Young, T. F. UO2F2. J. Am. Chem. Soc. 1954, 76, 1436–1443.10.1021/ja01634a090Suche in Google Scholar

Jung, W.; Juza, R. Darstellung und kristallstruktur des zirkonnitridfluorids. Z. Anorg. Allg. Chem. 1973a, 399, 129–147.Suche in Google Scholar

Jung, W.; Juza, R. Nitridfluoride des Urans. Z. Anorg. Allg. Chem. 1973b, 399, 148–162.Suche in Google Scholar

Juza, R.; Meyer, W. Über uran-nitrid-chlorid, -bromid und -jodid. Z. Anorg. Allg. Chem. 1969, 366, 43–50.Suche in Google Scholar

Juza, R.; Sievers, R. Nitridhalogenide des thoriums. Z. Anorg. Allg. Chem. 1968, 363, 258–272.Suche in Google Scholar

Kline, R. J.; Kershner, C. J. The oxidation of uranium(IV) acetate by silver acetate in liquid ammonia. Inorg. Chem. 1966, 5, 932–934.Suche in Google Scholar

Knacke, O.; Lossmann, G.; Müller, F. Zur thermischen dissoziation und sublimation von UO2F2. Z. Anorg. Allg. Chem. 1969a, 371, 32–37.Suche in Google Scholar

Knacke, O.; Lossmann, G.; Müller, F. Zustandsdiagramme zum system uran-sauerstoff-fluor. Z. Anorg. Allg. Chem. 1969b, 370, 91–103.Suche in Google Scholar

Kovar, R. A.; Morgan, G. L. Beryllium-9 and hydrogen-1 magnetic resonance studies of beryllium compounds in solution. J. Am. Chem. Soc. 1970, 92, 5067–5072.Suche in Google Scholar

Kraus, F.; Baer, S. A. UF6 and UF4 in liquid ammonia: [UF7(NH3)]3- and [UF4(NH3)4]. Chem. Eur. J. 2009, 15, 8269–8274.Suche in Google Scholar

Kraus, F.; Baer, S. A. Higher ammoniates of BF3 and SiF4: Syntheses, crystal structures, and theoretical calculations. Z. Anorg. Allg. Chem. 2010, 636, 414–422.Suche in Google Scholar

Kraus, F.; Baer, S. A. mer-triammine trifluorid iron(III), mer-[FeF3(NH3)3]. Z. Naturforsch. 2011a, 66b, 865–867.Suche in Google Scholar

Kraus, F.; Baer, S. A. Tetraammine tetrafluorido cerium(IV) ammonia(1/1), [CeF4(NH3)4]*NH3, Z. Naturforsch. 2011b, 66b, 868–870.Suche in Google Scholar

Kraus, F.; Baer, S. A.; Fichtl, M. B. The reactions of silver, zirconium and hafnium fluorides with liquid ammonia: Syntheses and crystal structures of Ag(NH3)2F·2NH3, [M(NH3)4F4]·NH3 (M = Zr, Hf), and (N2H7)F. Eur. J. Inorg. Chem. 2009a, 441–447.Suche in Google Scholar

Kraus, F.; Fichtl, M. B.; Baer, S. A. Beryllium diammine difluoride [BeF2(NH3)2]. Z. Naturforsch. 2009b, 64b, 257–262.Suche in Google Scholar

Kraus, F.; Baer, S. A.; Karttunen, A. J. The complex amide K2[Zr(NH2)6]. Z. Anorg. Allg. Chem. 2011, 637, 1122–1130.10.1002/zaac.201100083Suche in Google Scholar

Kraus, F.; Baer, S. A.; Buchner, M. R.; Karttunen, A. J. Reactions of beryllium halides in liquid ammonia: The tetraammine beryllium cation [Be(NH3)4]2+, its hydrolysis products, and the action of Be2+ as a fluoride ion acceptor. Chem. Eur. J. 2012, 18, 2131–2142.Suche in Google Scholar

Lagowski, J. J. Liquid ammonia. Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2007, 37, 115–153.Suche in Google Scholar

Marchand, R.; Lang, J. Preparation de nouveaux Halogenonitrures de Zinc. Mater. Res. Bull. 1971, 6, 845–852.Suche in Google Scholar

Meng, W.; Kraus, F. Crystal structures of Ag2ZrF6·8NH3 and Ag2HfF6·8NH3 and their synthesis by the reactive fluoride route in liquid ammonia. Eur. J. Inorg. Chem. 2008, 3068–3074.10.1002/ejic.200800230Suche in Google Scholar

Menil, F.; Pezat, M.; Tanguy, B.; Moureu, M. H. Étude par effet mössbauer du fluoronitrure de fer Fe4N3F3. C. R. Acad. Sci. Paris1975, 281, 849–852.Suche in Google Scholar

Metz, S.; Holthausen, M. C.; Frenking, G. Theoretical studies of inorganic compounds. 36 Structures and bonding Analyses of Beryllium Chloro Complexes with Nitrogen. Z. Anorg. Allg. Chem. 2006, 632, 814–818.Suche in Google Scholar

Meyer, K.; Minidola, D. J.; Baker, T. A.; Davis, W. M.; Cummins, C. C. Hexakisamidokomplexe des urans13. Angew. Chem. 2000a, 112, 3191–3194.Suche in Google Scholar

Meyer, K.; Minidola, D. J.; Baker, T. A.; Davis, W. M.; Cummins, C. C. Uranium hexakisamido complexes13. Angew. Chem. 2000b, 39, 3063–3066.Suche in Google Scholar

Mieleitner, K.; Steinmetz, H. Über das hydrat und das ammoniakat des berylliumchlorids. Z. Anorg. Allg. Chem. 1913, 80, 71–78.Suche in Google Scholar

Myers, W. L. A Literature review on the chemical and physical properties of uranyl fluoride UO2F2. 1990, LA-11896-MS.10.2172/6856259Suche in Google Scholar

Neumüller, B.; Dehnicke, K.; Puchta, R. Die kristallstruktur von [BeCl2(15-Krone-5)]. Z. Anorg. Allg. Chem. 2008, 634, 1473–1476.10.1002/zaac.200800145Suche in Google Scholar

Nocton, G.; Pécaut, J.; Mazzanti, M. A nitrido centered uranium azide. Angew. Chem. 2008a, 120, 3082–3084.Suche in Google Scholar

Nocton, G.; Pécaut, J.; Mazzanti, M. A nitrido-centered uranium azido cluster obtained from a uranium azide. Angew. Chem. Int. Ed. 2008b, 47, 3040–3042.Suche in Google Scholar

Olsson, F. Über komplexe uranylfluoride. Z. Anorg. Allg. Chem. 1930, 187, 112–120.Suche in Google Scholar

Patil, K. C.; Secco, E. A. Metal halide ammines. II. Thermal analyses, calorimetry and infrared spectra of fluoride ammines and hydrates of bivalent metals. Can. J. Chem. 1972, 50, 567–573.Suche in Google Scholar

Peters, W. Die gültigkeit der wernerschen theorie der nebenvalenzen für das gebiet der ammoniakate. Z. Anorg. Allg. Chem. 1912, 77, 137–190.Suche in Google Scholar

Pezat, M.; Tanguy, B.; Vlasse, M.; Portier, J.; Hagenmüller, P. Les fluoronitrures de terres rares. J. Solid State Chem. 1976, 18, 381–390.10.1016/0022-4596(76)90122-5Suche in Google Scholar

Plitzko, C.; Meyer, G. Synthese und kristallstrukturen von NH4(Si(NH3)F5) und (Si(NH3)2F4). Z. Anorg. Allg. Chem. 1996, 622, 1646–1650.Suche in Google Scholar

Plitzko, C.; Strecker, M.; Meyer, G. Synthese und kristallstruktur der “fluorid-ammoniakate” Zr(NH3)4F4 und Hf(NH3)F4. Z. Anorg. Allg. Chem. 1997, 623, 79–83.Suche in Google Scholar

Puchta, R.; van Eldik, R. Ligand exchange processes on solvated beryllium cations. II [Be(solvent)(12-Crown-4)]2 + . Z. Anorg. Allg. Chem. 2008a, 634, 735–739.Suche in Google Scholar

Puchta, R.; van Eldik, R. Ligand-exchange processes on solvated beryllium cations. III which model is preferable for quantum-chemical investigations of a water-exchange mechanism? Helv. Chim. Acta2008b, 91, 1063–1071.10.1002/hlca.200890114Suche in Google Scholar

Puchta, R.; van Eldik, R. Ligand exchange processes on solvated beryllium cations. IV [Be(H2O)2(imidazole-based Chelate9]. Z. Anorg. Allg. Chem. 2008c, 634, 1915–1920.Suche in Google Scholar

Puchta, R.; van Eikema Hommes, N.; van Eldik, R. Evidence for interchange ligand-exchange processes on solvated beryllium cations. Helv. Chim. Acta2005, 88, 911–922.Suche in Google Scholar

Puchta, R.; Neumüller, B.; Dehnicke, K. (Ph4P)2[Be3(μ-OH)3(H2O)6]Cl5: Kristallstruktur und DFT-rechnungen. Z. Anorg. Allg. Chem. 2009a, 635, 1196–1199.Suche in Google Scholar

Puchta, R.; Pasgreta, E.; van Eldik, R. Ligand exchange processes on the smallest solvated alkali and alkaline earth metal cations: an experimental and theoretical approach. Adv. Inorg. Chem. Radiochem. 2009b, 61, 523–571.Suche in Google Scholar

Roos, M.; Meyer, G. Zwei galliumfluorid-ammoniakate: Ga(NH3)F3 und Ga(NH3)2F3. Z. Anorg. Allg. Chem. 1999a, 625, 1129–1134.Suche in Google Scholar

Roos, M.; Meyer, G. Das monoammoniakat des galliumamidfluorids: Ga(NH3)(NH2)F2. Z. Anorg. Allg. Chem. 1999b, 625, 1839–1842.Suche in Google Scholar

Ruhlandt-Senge, K.; Bartlett, R. A.; Olmstead, M.; Power, P. P. Organo beryllium. Inorg. Chem. 1993, 32, 1724–1728.Suche in Google Scholar

Sahoo, B.; Satapathy, K. C. Preparation of uranium tetrafluoride by thermal decomposition of hydrazine uranyl fluoride complexes. J. Inorg. Nucl. Chem. 1964, 26, 1379–1380.Suche in Google Scholar

Schmidbaur, H.; Kumberger, O.; Riede, J. Beryllium salicylate dihydrate. Inorg. Chem. 1991, 30, 3101–3103.10.1021/ic00015a032Suche in Google Scholar

Schmidt, K. H.; Müller, A. Vibrational spectra and force constants of pure ammine complexes. Coord. Chem. Rev. 1976, 19, 41–97.Suche in Google Scholar

Schmidt, M.; Schmidbaur, H. Ligand redistribution equilibria in aqueous fluoroberyllate solutions. Z. Naturforsch. 1998, 53b, 1294–1300.Suche in Google Scholar

Schumb, W. C.; O’Malley, R. F. The fluorination of nitrides. Inorg. Chem. 1964, 3, 922–923.Suche in Google Scholar

Semenenko, K. H. X-ray diffraction study of tetraammine beryllium chloride. Vestn. Mosk. Univ., Ser. 2: Khim. 1965, 20, 39–41.Suche in Google Scholar

Sipachev, V. A.; Grigor’ev, A. I.; Novoselova, A. V. Beryllium ammonia. Zh. Strukt. Khim. 1969, 10, 1031–1035.Suche in Google Scholar

Sohrin, Y.; Kokusen, H.; Kihara, S.; Matsui, M.; Kushi, Y.; Shiro, M. Organo beryllium. J. Am. Chem. Soc. 1993, 115, 4128–4136.10.1021/ja00063a034Suche in Google Scholar

Spacu, P. Über die ammoniakate der uran-VI- und uran-IV-chloride. Z. Anorg. Allg. Chem. 1936, 230, 181–186.Suche in Google Scholar

Tanguy, B.; Pezat, M.; Portier, J.; Hagenmüller, P. Sur un fluoronitrure de lanthane LaNxF3–3x. Mater. Res. Bull. 1971, 6, 57–62.Suche in Google Scholar

Tanguy, B.; Pezat, M.; Portier, J.; Hagenmüller, P. Le fluoronitrure de gadolinium Gd3NF6. C. R. Acad. Sci. Paris1972, 274, 1344–1346.Suche in Google Scholar

Vecher, R. A.; Volodkovich, L. M.; Petrov, G. S.; Usovich, E. G.; Vecher, A. A. Electrochemical properties of lanthanum fluoride nitride. Vestn. Belorus. Un-ta1984, 2, 8–11.Suche in Google Scholar

Vogt, T.; Schweda, E.; Laval, J. P.; Frit, B. Neutron powder investigation of praseodymium and cerium nitride fluoride solid solutions. J. Solid State Chem. 1989, 83, 324–331.Suche in Google Scholar

Voigt, A.; Abram, U.; Kirmse, R. The existence of [ReNF4]- – an EPR study. Inorg. Chem. Commun. 1998, 1, 141–142.Suche in Google Scholar

von Unruh A., Universität Rostock, 1909.Suche in Google Scholar

Wagner, T. R. Preparation and single-crystal structure analysis of Sr2NF. J. Solid State Chem. 2002, 169, 13–18.Suche in Google Scholar

Weber, W.; Schweda, E. Darstellung und struktur von Sn(NH2)2F2. Z. Anorg. Allg. Chem. 1998, 624, 1221–1224.Suche in Google Scholar

Woidy, P.; Karttunen, A. J.; Kraus, F. Uranyl halides from liquid ammonia: [UO2(NH3)5]Cl2·NH3 and [UO2(NH3)3F2]2·2NH3 and their decomposition products. Z. Anorg. Allg. Chem. 2012, accepted.10.1002/zaac.201200127Suche in Google Scholar

Woodward, P.; Vogt, T.; Weber, W.; Schweda, E. Structure of Sn(ND3)2F4 – A molecular precursor for the synthesis of nitride fluorides. J. Solid State Chem. 1998, 138, 350–360.Suche in Google Scholar

Yoshihara, K.; Kanno, M.; Mukaibo, T. A new compound – UNF. J. Inorg. Nucl. Chem. 1969, 31, 985–988.10.1016/0022-1902(69)80146-6Suche in Google Scholar

Received: 2012-4-16
Accepted: 2012-5-29
Published Online: 2012-07-01
Published in Print: 2012-07-01

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Heruntergeladen am 15.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/irm-2012-0003/pdf
Button zum nach oben scrollen