Site of Bond Breaking in mer-(Dihapto-[60]fullerene) (Dihapto-1,2-Bis-(DiphenyIphosphino)ethane Tricarbonyl Tungsten(0)
-
Yessenia Ocasio-Delgadof
, Luis A. Rivera-Riveraf , Gisela Crespo-Romanf und Jose E. Cortes-Figueroa
Abstract
Piperidine (pip) displaces l,2-bis(diphenylphosphino)ethane (dppe) from mer-(η2-C60)(η2-dppe)W(CO)3 to produce mer*-(η2-C60)(η1-ρίρ)2\ν(ΟΟ)3. The reactions are first order and second order with respect to the molar concentrations of m£r-(r|2-C60)(r|2-dppe)W(CO)3 and pip, respectively. The proposed mechanism, based on the rate law and on the activation parameters, involves an initial pip-assisted ringopening of the dppe ligand to produce the electronically-saturated intermediate fac (η2-C60)(η'-ρίρ) (n1-dppe)W(CO)3. This mechanism differs from previously proposed mechanisms for the ligand exchange reactions of closely-related complexes such as/fac-(η1-L)(η2-dppe)W(CO)3 (L = CO, piperidine, pyridine) and is contrary to the known cis labilizing property of dppe. These results suggest that [60]fullerene has a strong steric influence on the inorganic moiety of the complex and on its chemical behavior.
© 2014 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Kinetics and Mechanism of the Reaction of Ninhydrin with Chromium(III)-tryptophan Complex in Absence and Presence of Surfactants
- Site of Bond Breaking in mer-(Dihapto-[60]fullerene) (Dihapto-1,2-Bis-(DiphenyIphosphino)ethane Tricarbonyl Tungsten(0)
- Kinetic and mechanistic studies of mono(terpyridine)- to bis(terpyridine)-nickel(II) complex formation reactions involving a range of substituted 2,2′:6′,2″-terpyridine ligands: an investigation of π-stacking interactions in outer-sphere complexes.
- Kinetics and mechanism of reaction of α-picolinic acid with dichloro-{2-(arylazo)- heterocycle}palladium(II) complexes
- Simulation of Complex Chemical Kinetics
- Kinetics and Mechanisms of the Reduction of Chromium(VI) by 2-Mercaptoethanesulfonic Acid in Aqueous Solution: Difference in the Mechanistic Process of Reduction with Noncarboxylate Thiols
- Salt Effects on Reactivity for Substitution Reactions of Pentacyanoferrate(II) Complexes
- Substitution of aqua ligands from ds-[Pt(en)(H2O)2](ClO4)2 and cis-[Pt(dmen)(H2O)2](ClO4)2 (en = ethylenediamine, dmen = Ν,Ν′-dimethylethylenediamine) by glutathione (reduced) (GSH) in aqueous medium - A Kinetic And Mechanistic Study.
- Synthesis, Characterisation and Dissociation of a Glycinate Bridged Trinuclear Co(III)-Cu(II)-Co(III) Complex
- Notes for Contributors. Inorganic Reaction Mechanisms (IRM)
Artikel in diesem Heft
- Kinetics and Mechanism of the Reaction of Ninhydrin with Chromium(III)-tryptophan Complex in Absence and Presence of Surfactants
- Site of Bond Breaking in mer-(Dihapto-[60]fullerene) (Dihapto-1,2-Bis-(DiphenyIphosphino)ethane Tricarbonyl Tungsten(0)
- Kinetic and mechanistic studies of mono(terpyridine)- to bis(terpyridine)-nickel(II) complex formation reactions involving a range of substituted 2,2′:6′,2″-terpyridine ligands: an investigation of π-stacking interactions in outer-sphere complexes.
- Kinetics and mechanism of reaction of α-picolinic acid with dichloro-{2-(arylazo)- heterocycle}palladium(II) complexes
- Simulation of Complex Chemical Kinetics
- Kinetics and Mechanisms of the Reduction of Chromium(VI) by 2-Mercaptoethanesulfonic Acid in Aqueous Solution: Difference in the Mechanistic Process of Reduction with Noncarboxylate Thiols
- Salt Effects on Reactivity for Substitution Reactions of Pentacyanoferrate(II) Complexes
- Substitution of aqua ligands from ds-[Pt(en)(H2O)2](ClO4)2 and cis-[Pt(dmen)(H2O)2](ClO4)2 (en = ethylenediamine, dmen = Ν,Ν′-dimethylethylenediamine) by glutathione (reduced) (GSH) in aqueous medium - A Kinetic And Mechanistic Study.
- Synthesis, Characterisation and Dissociation of a Glycinate Bridged Trinuclear Co(III)-Cu(II)-Co(III) Complex
- Notes for Contributors. Inorganic Reaction Mechanisms (IRM)