Startseite Stereocomplex formation of a poly(D-lactide)/poly(L-lactide) blend on a technical scale
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stereocomplex formation of a poly(D-lactide)/poly(L-lactide) blend on a technical scale

  • Boris Marx EMAIL logo , Lars Bostan , Axel S. Herrmann , Ella M. Schmidt und M. Mangir Murshed
Veröffentlicht/Copyright: 14. Juni 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Poly(D-lactide) (PDLA) and poly(L-lactide) (PLLA), both available on the market, are blended on a technical scale. Using a special process control, the two materials are blended in a twin-screw extruder at a mass throughput rate of 2 kg/h, resulting in a stereocomplex Poly(-lactide) (PLA) blend. Thermal analysis indicates only one melting point at 235 °C. Both the Raman spectra and X-ray powder diffraction patterns show characteristic features for the stereocomplex PLA. With the available amount of this blend PLA fibers with technical strengths can be developed by melt spinning. As such, the application of the biopolymer PLA can be expanded, leading to substitute the conventional plastics for conserving both the resources and the environment.


Corresponding author: Boris Marx, Faserinstitut Bremen, Am Biologischen Garten 2 – Geb. IW3, D-28359 Bremen, Germany, E-mail:

Acknowledgements

The results presented here were obtained in the research project “High-performance PLA bico-fibers (PLA2)”. The IGF project PLA2 (AiF No. 20570 N) of the Forschungsvereinigung Werkstoffe aus nachhaltigen Rohstoffen e.V., Breitscheidstraβe 97, 07407 Rudolstadt, Germany, was funded by the German Federal Ministry of Economics and Climate Protection through the AiF within the framework of the program for the promotion of joint industrial research and development (IGF) based on a resolution of the German Bundestag. We would like to express our gratitude for this.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Auras, R.A., Lim, L.T., Selke, S.E.M., and Tsuji, H. (2010). Poly(Lactic acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons.10.1002/9780470649848Suche in Google Scholar

Avinc, O. and Khoddami, A. (2009). Overview of poly(lactic acid) (PLA) fibre: part I: production, properties, performance, environmental impact, and end-use applications of poly(lactic acid) fibres. Fibre Chem. 41: 391–401, https://doi.org/10.1007/s10692-010-9213-z.Suche in Google Scholar

Bai, H., Deng, S., Bai, D., Zhang, Q., and Fu, Q. (2017). Recent advances in processing of stereocomplex-type polylactide, macromol. Rapid Commun. 38: 1700454, https://doi.org/10.1002/marc.201700454.Suche in Google Scholar PubMed

Bao, J., Chang, R., Shan, G., Bao, Y., and Pan, P. (2016). Promoted stereocomplex crystallization in supramolecular stereoblock copolymers of enantiomeric poly(lactic acid)s, cryst. Growth Des. 16: 1502–1511, https://doi.org/10.1021/acs.cgd.5b01627.Suche in Google Scholar

Becker, J.M., Pounder, R.J., and Dove, A.P. (2010). Synthesis of poly(lactide)s with modified thermal and mechanical properties, macromol. Rapid Commun 31: 1923–1937, https://doi.org/10.1002/marc.201000088.Suche in Google Scholar PubMed

Cartier, L., Okihara, T., and Lotz, B. (1997). Triangular polymer single crystals: stereocomplexes, twins, and frustrated structures. Macromolecules 30: 6313–6322, https://doi.org/10.1021/ma9707998.Suche in Google Scholar

Chen, Q., Auras, R., Corredig, M., Kirkensgaard, J.J.K., Mamakhel, A., and Uysal-Unalan, I. (2022). New opportunities for sustainable bioplastic development: tailorable polymorphic and three-phase crystallization of stereocomplex polylactide by layered double hydroxide. Int. J. Biol. Macromol. 222: 1101–1109, https://doi.org/10.1016/j.ijbiomac.2022.09.205.Suche in Google Scholar PubMed

Endres, H.J. and Siebert-Raths, A. (2011). Engineering biopolymers: markets, manufacturing, properties and applications. Carl Hanser Verlag.10.3139/9783446430020.fmSuche in Google Scholar

Fischer, H., Haag, K., and Müssig, J. (2016). Standardisation & harmonisation of the length analysis of flock fibres by scanner-based image analysis. Melliand Int. 22: 16–18.Suche in Google Scholar

Fourné, F. (1995). Synthetische fasern: herstellung, maschinen und apparate, eigenschaften – Handbuch für anlagenplanung, maschinenkonstruktion und betrieb. Carl Hanser Verlag.Suche in Google Scholar

Fukushima, K. and Kimura, Y. (2006). Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym. Int. 55: 626–642, https://doi.org/10.1002/pi.2010.Suche in Google Scholar

Ikada, Y., Jamshidi, K., Tsuji, H., and Hyon, S.H. (1987). Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20: 904–906, https://doi.org/10.1021/ma00170a034.Suche in Google Scholar

Jamshidian, M., Arab-Tehrany, E., Imran, M., Jacquot, M., and Desobry, S. (2010). Poly-Lactic acid: production, applications, nanocomposites, and release studies. Compr. Rev. Food Sci. Food Saf. 9: 552–571, https://doi.org/10.1111/j.1541-4337.2010.00126.x.Suche in Google Scholar PubMed

Jim Jem, K. and Tan, B. (2020). The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv. Ind. Eng. Polym. Res. 3: 60–70, https://doi.org/10.1016/j.aiepr.2020.01.002.Suche in Google Scholar

Kister, G., Cassanas, G., and Vert, M. (1998). Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly( lactic acid)s. Polymer 39: 267–273, https://doi.org/10.1016/S0032-3861(97)00229-2.Suche in Google Scholar

Kohlgrüber, K., Bierdel, M., and Rust, H. (2022). Plastics Compounding and polymer processing: fundamentals, machines, equipment, application technology. Carl Hanser Verlag.10.3139/9781569908389.fmSuche in Google Scholar

Körber, S., Moser, K., and Diemert, J. (2022). Development of high temperature resistant stereocomplex PLA for injection moulding. Polymers 14: 384, https://doi.org/10.3390/polym14030384.Suche in Google Scholar PubMed PubMed Central

Lawrence, C. (2015). Chapter 10 fibre to yarn – filament yarn spinning. In: Textiles and fashion – materials, design and technology. Woodhead Publishing, pp. 213–253.10.1016/B978-1-84569-931-4.00010-6Suche in Google Scholar

Li, S. and Vert, M. (2003). Synthesis, characterization, and stereocomplex-induced gelation of block copolymers prepared by ring-opening polymerization of L(D)-Lactide in the presence of poly(ethylene glycol). Macromolecules 36: 8008–8014, https://doi.org/10.1021/MA034734I.Suche in Google Scholar

Lim, L.T., Auras, R., and Rubino, M. (2008). Processing technologies for poly(lactic acid). Prog. Polym. Sci. 33: 820–852, https://doi.org/10.1016/j.progpolymsci.2008.05.004.Suche in Google Scholar

Masaki, D., Fukui, Y., Toyohara, K., Ikegame, M., Nagasaka, B., and Yamane, H. (2008). Stereocomplex Formation in the poly(L-lactic acid)/poly(D-lactic acid) melt blends and the melt spun fibers. Seni’I Gakkaaishi 64: 212–219, https://doi.org/10.2115/fiber.64.212.Suche in Google Scholar

Mount, E.M. (2017). 12 – extrusion processes. In: Kutz, M. (Ed.). Applied plastics engineering handbook, 2nd ed. William Andrew Publishing, pp. 217–264.10.1016/B978-0-323-39040-8.00012-2Suche in Google Scholar

Müssig, J., Fischer, H., Graupner, N., and Drieling, A. (2010). Chapter 13 testing methods for measuring physical and mechanical fibre properties (plant and animal fibres). In: Industrial applications of natural fibres: structure, properties and technical applications. Wiley VCH, pp. 269–309.10.1002/9780470660324.ch13Suche in Google Scholar

Nampoothiri, K.M., Nair, N.R., and John, R.P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101: 8493–8501, https://doi.org/10.1016/j.biortech.2010.05.092.Suche in Google Scholar PubMed

Schmidt, N., Keuker-Baumann, S., Meyer, J., and Huber, K. (2019). Phase transformation behavior of polylactide probed by small angle light scattering and calorimetry. Journal of Polymer Science Part B: Polymer Physics 57: 1483–1495, https://doi.org/10.1002/polb.24892.Suche in Google Scholar

Shao, J., Xiang, S., Bian, X., Sun, J., Li, G., and Chen, X. (2015). Remarkable melting behavior of PLA stereocomplex in linear PLLA/PDLA blends. Ind. Eng. Chem. Res. 54: 2246–2253, https://doi.org/10.1021/ie504484b.Suche in Google Scholar

Tarkhanov, E., Lehmann, A., and Menrath, A. (2020). Halfway to technical stereocomplex PLA products - an arduous path to a breakthrough. Macromol. Mater. Eng. 305: 2000417, https://doi.org/10.1002/mame.202000417.Suche in Google Scholar

Teijin Limited. (2007). Teijin launches BIOFRONT heat-resistant bio plastic – 100% BIOFRONT car seat fabrics developed with mazda. Press Release, Available at: https://renewable-carbon.eu/news/media/news-images/20071001-02/TEIJIN___Group_News.pdf (Accessed 03 April 2023).Suche in Google Scholar

Tsuji, H. (2005). Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci. 5: 569–597, https://doi.org/10.1002/mabi.200500062.Suche in Google Scholar PubMed

Tsuji, H. (2016). Poly(lactic acid) stereocomplexes: a decade of progress. Adv. Drug Delivery Rev. 107: 97–135, https://doi.org/10.1016/j.addr.2016.04.017.Suche in Google Scholar PubMed

Tsuji, H., Horii, F., Hyon, S.H., and Ikada, Y. (1991a). Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions. Macromolecules 24: 2719–2724, https://doi.org/10.1021/ma00010a013.Suche in Google Scholar

Tsuji, H., Hyon, S.H., and Ikada, Y. (1991b). Stereocomplex formation between enantiomeric poly(lactic acid)s. 3. Calorimetric studies on blend films cast from dilute solution. Macromolecules 24: 5651–5656, https://doi.org/10.1021/ma00020a026.Suche in Google Scholar

Tsuji, H. and Ikada, Y. (1993). Stereocomplex formation between enantiomeric poly(lactic acids). 9. Stereocomplexation from the melt. Macromolecules 26: 6918–6926, https://doi.org/10.1021/ma00077a032.Suche in Google Scholar

Virkutyte, J. and Varma, R.S. (2011). Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem. Sci. 2: 837–846, https://doi.org/10.1039/C0SC00338G.Suche in Google Scholar

Wasanasuk, K., Tashiro, K., Hanesaka, M., Ohhara, T., Kurihara, K., Kuroki, R., Tamada, T., Ozeki, T., Kanamoto, T. (2011). Crystal structure analysis of poly(L-lactic acid) α form on the basis of the 2-dimensional wide-angle synchrotron X-ray and neutron diffraction measurements. Macromolecules 44: 6441–6452, https://doi.org/10.1021/ma2006624.Suche in Google Scholar

Wu, C.S. (2015). Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: characterisation and biodegradability. Polym. Degrad. Stab. 121: 51–59, https://doi.org/10.1016/j.polymdegradstab.2015.08.011.Suche in Google Scholar

Zhang, J., Sato, H., Tsuji, H., Noda, I., and Ozaki, Y. (2005). Infrared spectroscopic study of CH3···O=C interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules 38: 1822–1828, https://doi.org/10.1021/ma047872w.Suche in Google Scholar

Received: 2022-10-10
Accepted: 2023-02-28
Published Online: 2023-06-14
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Research Articles
  3. Experimental investigation and simulation of 3D printed sandwich structures with novel core topologies under bending loads
  4. Notable electrical and mechanical properties of polyacrylamide (PAM) with graphene oxide (GO) and single-walled carbon nanotubes (SWCNTs)
  5. Study on the thermal stability and combustion performance of polyurethane foams modified with manganese phytate
  6. Improving the rheology of linear low-density polyethylene (LLDPE) and processability of blown film extrusion using a new binary processing aid
  7. Stereocomplex formation of a poly(D-lactide)/poly(L-lactide) blend on a technical scale
  8. Experimental investigation on mechanical and tribological characteristics of snake grass/sisal fiber reinforced hybrid composites
  9. Tensile properties of sandwich-designed carbon fiber filled PLA prepared via multi-material additive layered manufacturing and post-annealing treatment
  10. Non-isothermal simulation of a corner vortex within entry flow for a viscoelastic fluid
  11. Feasibility assessment of injection molding online monitoring based on oil pressure/nozzle pressure/cavity pressure
  12. Modelling of roller conveyor for the simulation of rubber tire tread extrusion
  13. Reactive compatibilization of polypropylene grafted with maleic anhydride and styrene, prepared by a mechanochemical method, for a blend system of biodegradable poly(propylene carbonate)/polypropylene spunbond nonwoven slice
  14. Effect of stacking sequence and thickness variation on the thermo-mechanical properties of flax-kenaf laminated biocomposites and prediction of the optimal configuration using a decision-making framework
  15. Design and manufacture of an additive manufacturing printer based on 3D melt electrospinning writing of polymer
Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2022-4296/html
Button zum nach oben scrollen