Startseite Naturwissenschaften Surfactant-free oil-in-oil emulsion-templating of polyimide aerogel foams
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surfactant-free oil-in-oil emulsion-templating of polyimide aerogel foams

  • Erin Farrell und Sadhan C. Jana EMAIL logo
Veröffentlicht/Copyright: 14. Juli 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A surfactant-free oil-in-oil emulsion-templating method is presented for fabrication of monolithic polyimide aerogel foams using monomer systems that produce fast sol–gel transition. An aerogel foam is a high porosity (∼90%) material with coexisting meso- and macropores inherent to aerogels with externally introduced micrometer size open cells (macrovoids) that are reminiscent of foams. The macrovoids are introduced in polyimide sol using surfactant-free emulsion-templating of droplets of an immiscible liquid that are stabilized against coalescence by fast sol–gel transition. Three immiscible liquids – cyclohexane, n-heptane, and silicone oil – are considered in this work for surfactant-free emulsion-templating. The aerogel foam monoliths, recovered by supercritical drying, exhibit smaller size macrovoids when n-heptane and cyclohexane are used as emulsion-templating liquid, while the overall porosity and the bulk density show weak dependence on the emulsion-templating liquid.


Corresponding author: Sadhan C. Jana, School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325-0301, USA, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by Division of Civil, Mechanical and Manufacturing Innovation, National Science Foundation under grant number CMMI 1826030.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abbott, S. (2017). Surfactant science: principles & practice. DEStech Publications, Inc., Lancaster.Suche in Google Scholar

Akimov, Y.K. (2003). Fields of application of aerogels (review). Instrum. Exp. Tech. 46: 287–299, https://doi.org/10.1023/A:1024401803057.10.1023/A:1024401803057Suche in Google Scholar

Androva, N.A., Bessonov, M.I., Laius, L.A., and Rudakov, A.P. (1970). Polyimides: a new class of thermally stable polymers. Prog. Mater. Sci. Ser. 7: 13–57.Suche in Google Scholar

Baetens, R., Jelle, B.P., and Gustavsen, A. (2011). Aerogel insulation for building applications: a state-of-the-art review. Energy Build. 43: 761–769, https://doi.org/10.1016/j.enbuild.2010.12.012.Suche in Google Scholar

Barbetta, A. and Cameron, N.R. (2004). Morphology and surface area of emulsion-derived (PolyHIPE) solid foams prepared with oil-phase soluble porogenic solvents: Span 80 as surfactant. Macromolecules 37: 3188–3201, https://doi.org/10.1021/ma0359436.Suche in Google Scholar

Bessonov, M.I., Koton, M.M., Kudryavtsev, V.V., and Lauis, L.A. (1987). Polyimides, thermally stable polymers. Plenum, New York.10.1007/978-1-4615-7634-1Suche in Google Scholar

Bhumgara, Z. (1995). Polyhipe foam materials as filtration media. Filtr. Sep. 32: 245–251, https://doi.org/10.1016/S0015-1882(97)84048-7.Suche in Google Scholar

Braun, R.D. and Manning, R.M. (2007). Mars exploration entry, descent, and landing challenges. J. Spacecraft Rockets 44: 310–323, https://doi.org/10.2514/1.25116.Suche in Google Scholar

Brinker, C.J. and Scherer, G. (1990). Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York, pp. 96–233.10.1016/B978-0-08-057103-4.50008-8Suche in Google Scholar

Cashman, J.L., Nguyen, B.N., Dosa, B., and Meador, M.A.B. (2020). Flexible polyimide aerogels derived from the use of a neopentyl spacer in the backbone, ACS Appl. Polym. Mater. 2: 2179–2189, https://doi.org/10.1021/acsapm.0c00153.Suche in Google Scholar

Daniel, C., Sannino, D., and Guerra, G. (2008). Syndiotactic polystyrene aerogels: adsorption in amorphous pores and absorption in crystalline nanocavities. Chem. Mater. 20: 577–582, https://doi.org/10.1021/cm702475a.Suche in Google Scholar

Duan, Y., Jana, S.C., Lama, B., and Espe, M. (2013). Reinforcement of silica aerogels using silane end-capped polyurethanes. Langmuir 29: 6156–6165, https://doi.org/10.1021/la4007394.Suche in Google Scholar

Duan, Y., Jana, S.C., Reinsel, A.M., Lama, B., and Espe, M.P. (2012). Surface modification and reinforcement of silica aerogels using polyhedral oligomeric silsesquioxanes. Langmuir 28: 15362−15371, https://doi.org/10.1021/la302945b.Suche in Google Scholar

Fesmire, J.E. and Sass, J.P. (2008). Aerogel insulation applications for liquid hydrogen launch vehicle tanks. Cryogenics 48: 223–231, https://doi.org/10.1016/j.cryogenics.2008.03.014.Suche in Google Scholar

Forest, L., Gibiat, V., and Hooley, A. (2001). Impedance matching and acoustic absorption in granular layers of silica aerogels. J. Non-Cryst. Solids 285: 230–235, https://doi.org/10.1016/s0022-3093(01)00458-6.Suche in Google Scholar

Grace, H.P. (1982). Dispersion phenomena in high viscosity fluid systems and application of static mixers as dispersion devices in such systems. Chem. Eng. Commun. 14: 225–277, https://doi.org/10.1080/00986448208911047.Suche in Google Scholar

Gu, S., Li, Z., Miyoshi, T., and Jana, S.C. (2015). Polybenzoxazine aerogels with controllable pore structures. RSC Adv. 5: 26801–26805, https://doi.org/10.1039/C5RA02635K.Suche in Google Scholar

Gu, S., Zhai, C., and Jana, S.C. (2016). Aerogel microparticles from oil-in-oil emulsion systems. Langmuir 32: 5637–5645, https://doi.org/10.1021/acs.langmuir.6b01043.Suche in Google Scholar PubMed

Guo, H., Meador, M.A.B., Cashman, J.L., Tresp, D., Dosa, B., Scheiman, D.A., and McCorkle, L.S. (2020). Flexible polyimide aerogels with dodecane links in the backbone structure. ACS Appl. Mater. Interfaces 12: 33288–33296, https://doi.org/10.1021/acsami.0c09321.Suche in Google Scholar PubMed

Guo, H., Meador, M.A.B., McCorkle, L., Quade, D.J., Guo, J., Hamilton, B., Cakmak, M., and Sprowl, G. (2011). Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl. Mater. Interfaces 3: 546–552, https://doi.org/10.1021/am101123h.Suche in Google Scholar PubMed

Jones, S.M. (2006). Aerogel: space exploration applications. J. Sol. Gel Sci. Technol. 40: 351–357, https://doi.org/10.1007/s10971-006-7762-7.Suche in Google Scholar

Joo, P., Yao, Y., Teo, N., and Jana, S.C. (2021). Modular aerogel brick fabrication via 3D-printed molds. Addit. Manuf. 46: 102059, https://doi.org/10.1016/j.addma.2021.102059.Suche in Google Scholar

Kawagishi, K., Saito, H., Furukawa, H., and Horie, K. (2007). Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels. Macromol. Rapid Commun. 28: 96–100, https://doi.org/10.1002/marc.200600587.Suche in Google Scholar

Kim, S.J., Chase, G., and Jana, S.C. (2015). Polymer aerogels for efficient removal of airborne nanoparticles. Sep. Purif. Technol. 156: 803–808, https://doi.org/10.1016/j.seppur.2015.11.005.Suche in Google Scholar

Kim, S.J., Chase, G., and Jana, S.C. (2016). The role of mesopores in achieving high efficiency airborne nanoparticle filtration using aerogel monoliths. Sep. Purif. Technol. 166: 48–54, https://doi.org/10.1016/j.seppur.2016.04.017.Suche in Google Scholar

Kim, S.J., Raut, P., Jana, S.C., and Chase, G. (2017). Electrostatically active polymer hybrid aerogels for airborne nanoparticle filtration. ACS Appl. Mater. Interfaces 9: 6401–6410, https://doi.org/10.1021/acsami.6b14784.Suche in Google Scholar

Kistler, S.S. (1932). Coherent expanded aerogels. J. Phys. Chem. 36: 52–64, https://doi.org/10.1021/j150331a003.Suche in Google Scholar

Kistler, S.S. (1935). The relation between heat conductivity and structure in silica aerogel. J. Phys. Chem. 39: 79–87, https://doi.org/10.1021/j150361a006.Suche in Google Scholar

Kocon, L., Despetis, F., and Phalippou, J. (1998). Ultralow density silica aerogels by alcohol supercritical drying. J. Non-Cryst. Solids 225: 96–100, https://doi.org/10.1016/s0022-3093(98)00322-6.Suche in Google Scholar

Kulkarni, A. and Jana, S.C. (2021). Surfactant-free syndiotactic polystyrene aerogel foams via pickering emulsion. Polymer 212: 123125, https://doi.org/10.1016/j.polymer.2020.123125.Suche in Google Scholar

Lee, J.K., Gould, G.L., and Rhine, W. (2009). Polyurea based aerogel for a high performance thermal insulation material. J. Sol. Gel Sci. Technol. 49: 209–220, https://doi.org/10.1007/s10971-008-1861-6.Suche in Google Scholar

Leventis, N., Sotiriou-Leventis, C., Chandrasekaran, N., Mulik, S., Larimore, Z.J., Lu, H., Churu, G., and Mang, J.T. (2010). Multifunctional polyurea aerogels from isocyanates and water. A structure−property case study. Chem. Mater. 22: 6692–6710, https://doi.org/10.1021/cm102891d.Suche in Google Scholar

Lin, W.-H. and Jana, S.C. (2021). Analysis of porous structures of cellulose aerogel monoliths and microparticles. Microporous Mesoporous Mater. 310: 110625, https://doi.org/10.1016/j.micromeso.2020.110625.Suche in Google Scholar

Mahadik-Khanolkar, S., Donthula, S., Sotiriou-Leventis, C., and Leventis, N. (2014). Polybenzoxazine aerogels. 1. High-yield room-temperature acid-catalyzed synthesis of robust monoliths, oxidative aromatization, and conversion to microporous carbons. Chem. Mater. 26: 1303–1317, https://doi.org/10.1021/cm403483p.Suche in Google Scholar

Mawhinney, K. and Jana, S.C. (2019). Design of emulsion-templated mesoporous–macroporous polyurea gels and aerogels. ACS Appl. Polym. Mater. 1: 3115–3129, https://doi.org/10.1021/acsapm.9b00762.Suche in Google Scholar

Mccusker, L.B., Liebau, F., and Engelhardt, G. (2001). Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Recommendations 2001). Pure Appl. Chem. 73: 381–394, https://doi.org/10.1351/pac200173020381.Suche in Google Scholar

Meador, M.A.B. (2014). Polyimide aerogels with three-dimensional cross-linked structure, US9309369B1.Suche in Google Scholar

Meador, M.A.B., Agnello, M., McCorkle, L., Vivod, S.L., and Wilmoth, N. (2016). Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Appl. Mater. Interfaces 8: 29073–29079, https://doi.org/10.1021/acsami.6b10248.Suche in Google Scholar PubMed

Meador, M.A.B., Alemán, C.R., Hanson, K., Ramirez, N., Vivod, S.L., Wilmoth, N., and McCorkle, L. (2015). Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels. ACS Appl. Mater. Interfaces 7: 1240–1249, https://doi.org/10.1021/am507268c.Suche in Google Scholar PubMed

Meador, M.A.B., Malow, E.J., Silva, R., Wright, S., Quade, D., Vivod, S.L., Guo, H., Guo, J., and Cakmak, M. (2012). Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl. Mater. Interfaces 4: 536–544, https://doi.org/10.1021/am2014635.Suche in Google Scholar PubMed

Meador, M.A.B., McMillon, E., Sandberg, A., Barrios, E., Wilmoth, N.G., Mueller, C.H., and Miranda, F.A. (2014). Dielectric and other properties of polyimide aerogels containing fluorinated blocks. ACS Appl. Mater. Interfaces 6: 6062–6068, https://doi.org/10.1021/am405106h.Suche in Google Scholar PubMed

Meador, M.A.B., Scherzer, C.M., Vivod, S.L., Quade, D., and Nguyen, B.N. (2010). Epoxy reinforced aerogels made using a streamlined process. ACS Appl. Mater. Interfaces 2: 2162–2168, https://doi.org/10.1021/am100422x.Suche in Google Scholar

Menner, A. and Bismarck, A. (2006). New evidence for the mechanism of the pore formation in polymerising high internal phase emulsions or why PolyHIPEs have an interconnected pore network structure. Macromol. Symp. 242: 19–24, https://doi.org/10.1002/masy.200651004.Suche in Google Scholar

Menner, A., Haibach, K., Powell, R., and Bismarck, A. (2006). Tough reinforced open porous polymer foams via concentrated emulsion templating. Polymer 47: 7628–7635, https://doi.org/10.1016/j.polymer.2006.09.022.Suche in Google Scholar

Molau, G.E. (1965). Heterogeneous polymer systems. II. Mechanism of stabilization of polymeric oil-in-oil emulsions. J. Polym. Sci. A Gen. Pap. 3: 4235–4242, https://doi.org/10.1002/pol.1965.100031219.Suche in Google Scholar

Mosanenzadeh, S.G., Saadatnia, Z., Karamikamkar, S., Park, C.B., and Naguib, H.E. (2020). Polyimide aerogels with novel bimodal micro and nano porous structure assembly for airborne nano filtering applications. RSC Adv. 10: 22909–22920, https://doi.org/10.1039/d0ra03907a.Suche in Google Scholar

Nekouei, M. and Vanapalli, S.A. (2017). Volume-of-fluid simulations in microfluidic T-junction devices: influence of viscosity ratio on droplet size. Phys. Fluids 29: 032007, https://doi.org/10.1063/1.4978801.Suche in Google Scholar

Pajonk, G. (1991). Aerogel catalysts. Appl. Catal. 72: 217–266, https://doi.org/10.1016/0166-9834(91)85054-y.Suche in Google Scholar

Pandit, N., Trygstad, T., Croy, S., Bohorquez, M., and Koch, C. (2000). Effect of salts on the micellization, clouding, and solubilization behavior of pluronic F127 solutions. J. Colloid Interface Sci. 222: 213–220, https://doi.org/10.1006/jcis.1999.6628.Suche in Google Scholar

Pantoja, M., Boynton, N., Cavicchi, K.A., Dosa, B., Cashman, J.L., and Meador, M.A.B. (2019). Increased flexibility in polyimide aerogels using aliphatic spacers in the polymer backbone. ACS Appl. Mater. Interfaces 11: 9425–9437, https://doi.org/10.1021/acsami.8b20420.Suche in Google Scholar

Randall, J.P., Meador, M.A.B., and Jana, S.C. (2011). Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl. Mater. Interfaces 3: 613–626, https://doi.org/10.1021/am200007n.Suche in Google Scholar

Richardson, J.F. and Zaki, W.N. (1954). Sedimentation and fluidisation: part 1. Chem. Eng. 32: 35–53.10.1016/S0263-8762(97)80006-8Suche in Google Scholar

Shinko, A., Jana, S.C., and Meador, M.A. (2015). Crosslinked polyurea aerogels with controlled porosity. RSC Adv. 5: 105329–105338, https://doi.org/10.1039/c5ra20788f.Suche in Google Scholar

Silverstein, M.S. (2014). PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog. Polym. Sci. 39: 199–234, https://doi.org/10.1016/j.progpolymsci.2013.07.003.Suche in Google Scholar

Smallwood, I.M. (2012). Handbook of organic solvent properties. Elsevier, New York, USA, pp. 1–306.Suche in Google Scholar

Tebboth, M., Menner, A., Kogelbauer, A., and Bismarck, A. (2014). Polymerised high internal phase emulsions for fluid separation applications. Curr. Opin. Chem. Eng. 4: 114–120, https://doi.org/10.1016/j.coche.2014.03.001.Suche in Google Scholar

Teo, N. and Jana, S.C. (2017). Open cell aerogel foams via emulsion templating. Langmuir 33: 12729–12738, https://doi.org/10.1021/acs.langmuir.7b03139.Suche in Google Scholar PubMed

Teo, N. and Jana, S.C. (2018). Solvent effects on tuning pore structures in polyimide aerogels. Langmuir 34: 8581–8590, https://doi.org/10.1021/acs.langmuir.8b01513.Suche in Google Scholar PubMed

Teo, N. and Jana, S.C. (2019). A surfactant-free process for fabrication of polyimide aerogel microparticles. Langmuir 35: 2303–2312, https://doi.org/10.1021/acs.langmuir.8b03841.Suche in Google Scholar PubMed

Teo, N., Gu, Z., and Jana, S.C. (2018). Polyimide-based aerogel foams via emulsion-templating. Polymer 157: 12729−12738, https://doi.org/10.1016/j.polymer.2018.10.030.Suche in Google Scholar

Teo, N., Jin, C., Kulkarni, A., and Jana, S.C. (2020). Continuous fabrication of core-shell aerogel microparticles using microfluidic flows. J. Colloid Interface Sci. 561: 772–781, https://doi.org/10.1016/j.jcis.2019.11.053.Suche in Google Scholar PubMed

Teo, N., Joo, P., Amis, E., and Jana, S.C. (2019). Development of intricate aerogel articles using fused filament fabrication. ACS Appl. Polym. Mater. 1: 1749–1756, https://doi.org/10.1021/acsapm.9b00301.Suche in Google Scholar

Wang, X. and Jana, S.C. (2013). Tailoring of morphology and surface properties of syndiotactic polystyrene aerogels. Langmuir 29: 5589–5598, https://doi.org/10.1021/la400492m.Suche in Google Scholar PubMed

Wong, L.L.C., Villafranca, P.M.B., Menner, A., and Bismarck, A. (2013). Hierarchical polymerized high internal phase emulsions synthesized from surfactant-stabilized emulsion templates. Langmuir 29: 5952–5961, https://doi.org/10.1021/la3047643.Suche in Google Scholar PubMed

Yoldas, B.E., Annen, M.J., and Bostaph, J. (2000). Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation. Chem. Mater. 12: 2475–2484, https://doi.org/10.1021/cm9903428.Suche in Google Scholar

Zapryanov, Z., Malhotra, A.K., Aderangi, N., and Wasan, D.T. (1983). Emulsion stability: an analysis of the effects of bulk and interfacial properties on film mobility and drainage rate. Int. J. Multiphas. Flow 9: 105–129, https://doi.org/10.1016/0301-9322(83)90047-2.Suche in Google Scholar

Zebida, O.A. (2011). Aerogel filters for removal of nanometric airborne particles. LAMBERT Academic Publishing (LAP), Chisinau, Republic of Moldova.Suche in Google Scholar

Zhai, C. and Jana, S.C. (2017). Tuning porous networks in polyimide aerogels for airborne nanoparticle filtration. ACS Appl. Mater. Interfaces 9: 30074–30082, https://doi.org/10.1021/acsami.7b09345.Suche in Google Scholar PubMed

Zhou, B., Shen, J., Yuehua, W., Wu, G., and Ni, X. (2007). Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Mater. Sci. Eng. 27: 1291–1294, https://doi.org/10.1016/j.msec.2006.06.032.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ipp-2022-4248).


Received: 2022-06-10
Accepted: 2022-06-27
Published Online: 2022-07-14
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2022-4248/pdf
Button zum nach oben scrollen