Startseite Pulsed IR Heating of Thermoplastic Sheets for Thermoforming Applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pulsed IR Heating of Thermoplastic Sheets for Thermoforming Applications

  • B. Buffel , K. Leeman und F. Desplentere
Veröffentlicht/Copyright: 15. September 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study presents the pulsed heating strategy as an advancement of the current state of the art in industry towards the theoretically fastest method of heating a thermoplastic sheet. Experimental temperature measurements are combined with an explicit finite difference numerical model to describe the pulsed heating method and indicate its added value in IR heating of thermoplastic sheets. Different process settings are evaluated and indicate the effect of the applied heat flux and the time interval tOFF during pulsed heating. When switched off, the residual heating of the heater elements is able to partially compensate for the convective heat losses at the surface of the sheet. This results in a more uniform temperature distribution through thickness without slowing down the overall heating process. The study shows that this effect is lost when the time interval in which the heater element is switched off, increases. Applying pulsed heating opens up a large processing window to control the through-thickness temperature difference. When the total amount of applied thermal energy is taken into account, pulsed heating is able to increase the overall heating rate and simultaneously keep the temperature difference through thickness limited.


Bart Buffel, KU Leuven Campus Brugge, Spoorwegstraat 12, 8200 Brugge, Belgium


References

Boztepe, S., Gilblas, R., De Almeida, O., Gerlach, C., Le Maoult, Y. and Schmidt, F., "The Role of Microcrystalline Structure on Optical Scattering Characteristics of Semi-Crystalline Thermoplastics and the Accuracy of Numerical Input for IR-Heating Modeling", Int. J. Mater. Form., 11, 717–727 (2018), DOI:10.1007/s12289-017-1386-z10.1007/s12289-017-1386-zSuche in Google Scholar

Boztepe, S., De Almeida, O., Gilblas, R., Le Maoult, Y., Schmidt, F. and Gerlach, C., "A Combined Experimental and Numerical Approach for Radiation Heat Transfer in Semi-Crystalline Thermoplastics", Int. J. of Therm. Sci., 142, 142–155 (2019), DOI:10.1016/j.ijthermalsci.2019.04.02010.1016/j.ijthermalsci.2019.04.020Suche in Google Scholar

Brogan, M. T., Monaghan, P. F., "Thermal Simulation of Quartz Tube Infra-Red Heaters Used in the Processing of Thermoplastic Composites", Composites Part A, 27A, 301–306 (1996), DOI:10.1016/1359-835X(95)00056-°10.1016/1359-835X(95)00056-°Suche in Google Scholar

Buffel, B., Desplentere, F., "A Numerical Study on Different Heating Strategies in Thermoforming of Thermoplastic Sheets", Proceedings of the Polymer Moulds & Innovation Conference, Ghent, p. 221–226 (2016)Suche in Google Scholar

Buffel, B., van Mieghem, B., van Bael, A. and Desplentere, F. "A Combined Experimental and Modelling Approach towards an Optimized Heating Strategy in Thermoforming of Thermoplastic Sheets", Int. Polym. Proc. 32, 378–386 (2017), DOI:10.3139/217.337010.3139/217.3370Suche in Google Scholar

Cosson, B., Schmidt, F., Le Maoult, Y. and Bordival, M., "Infrared Heating Stage Simulation of Semi-Transparent Media (PET) Using Ray Tracing Method", Int. J. Mater. Form., 4, 1–10 (2011), DOI:10.1007/s12289-010-0985-°10.1007/s12289-010-0985-°Suche in Google Scholar

Bordival, M., Schmidt, F. M., Le Maoult, Y. and Velay, V. "Optimization of Preform Temperature Distribution for the Stretch-Blow Molding of PET Bottles: Infrared Heating and Blowing Modeling", Polym. Eng. Sci., 49, 783–793 (2009), DOI:10.1002/pen.2129610.1002/pen.21296Suche in Google Scholar

Courant, R., Friedrichs, K. and Lewy, H., "On the Partial Difference Equations of Mathematical Physics", IBM J. Res. Develop., 11, 215–234 (1967), DOI:10.1147/rd.112.021510.1147/rd.112.0215Suche in Google Scholar

Chy, M. I., Boulet, B., "A New Method for Estimation and Control of Temperature Profile over α Sheet in Thermoforming Process", IEEE Publications, Houston (2010), DOI:10.1109/IAS.2011.607434210.1109/IAS.2011.6074342Suche in Google Scholar

Chy, M. I., Boulet, B., "Development of an Improved Mathematical Model of the Heating Phase of Thermoforming Process", IEEE Publications, Orlando (2011a), DOI:10.1109/IAS.2011.607434310.1109/IAS.2011.6074343Suche in Google Scholar

Chy, M. I., Boulet, B., "A Model Predictive Controller of Plastic Sheet Temperature for α Thermoforming Process", Proceedings of the American Control Conference, San Francisco, p. 4410–4415, (2011b), DOI:10.1109/ACC.2011.599155110.1109/ACC.2011.5991551Suche in Google Scholar

Chy, M. I., Boulet, B., "Iterative Learning Model Predictive Controller (2016), DOI:10.1002/9781119116288.ch12 of Plastic Sheet Temperature for α Thermoforming Sheet", Proceedings of the American Control Conference, Montreal, Canada, p. 627–633 (2012), DOI:10.1109/ACC.2012.631552110.1002/9781119116288.ch12Suche in Google Scholar

Cunningham, J. E., Monaghan, P. F., Brogan M. T. and Cassidy, S. F., "Modelling of Pre-Heating of Flat Panels Prior to Press Forming", Composites Part A, 28A, 17–24 (1997), DOI:10.1016/S1359-835X(96)00089-910.1016/S1359-835X(96)00089-9Suche in Google Scholar

Cunningham, J. E., Monaghan, P. F. and Brogan M. T., "Prediction of the Temperature Profile within Composite Sheets during Pre-Heating", Composites Part A, 29A, 51–61 (1998), DOI:10.1016/S1359-835X(97)00031-610.1016/S1359-835X(97)00031-6Suche in Google Scholar

Dos Santos, W. N., "Thermal Properties of Melt Polymers by the Hot Wire Technique", Polym. Test., 24, 932–941 (2005), DOI:10.1016/j.polymertesting.2005.06.00110.1016/j.polymertesting.2005.06.001Suche in Google Scholar

Duarte, F. M., Covas, J. A., "On the Use of the Heating Stage to Control the Thickness Distribution in Thermoformed Parts", Int. Polym. Proc., 19, 186–198 (2004), DOI:10.3139/217.182110.3139/217.1821Suche in Google Scholar

Gauthier, G., Mark, A., Boulet, B., Haurani, A., Girard, P. and Diraddo, R., "A New Absorption Based Model for Sheet Reheat in Thermoforming", SPE ANTEC Tech. Papers, 353–357 (2005)10.1109/ISIE.2006.295619Suche in Google Scholar

Gilham, E., "Lean Manufacturing", SPE European Thermoforming Division Conference, Sitges Barcelona (2016)Suche in Google Scholar

Haji, N., Spruiell, J. E., "Radiation Pyrometry on Semitransparent Sheets. I: Gray Media", Polym. Eng. Sci., 34, 116–121 (1994a), DOI:10.1002/pen.76034020710.1002/pen.760340207Suche in Google Scholar

Haji, N., Spruiell, J. E., "Radiation Pyrometry on Semitransparent Sheets. II: Media with Wavelength Dependent Absorption Coefficient", Polym. Eng. Sci., 34, 122–127 (1994b), DOI:10.1002/pen.76034020810.1002/pen.760340208Suche in Google Scholar

Holman, J. L.: Heat Transfer, °th Edition, McGraw-Hill, New York (1997)Suche in Google Scholar

Le Maoult, Y., Schmidt, F., "Chapter 13 Infrared Radiation Applied to Polymer Processes", in Heat Transfer in Polymer Composite Materials, Boyard, N. (Ed.), Wiley & Sons, Hoboken, p. 385 (2016), DOI:10.1002/9781119116288.ch1310.1002/9781119116288.ch13Suche in Google Scholar

Lee, J. K., Virkler, T. L. and Scott, C. E., "Effects of Rheological Properties and Processing Parameters on ABS Thermoforming", Polym. Eng. Sci., 41, 240–261 (2001a), DOI:10.1002/pen.1072510.1002/pen.10725Suche in Google Scholar

Lee, J. K., Virkler, T. L. and Scott, C. E., "Influence of Initial Sheet Temperature on ABS Thermoforming", Polym. Eng. Sci., 41, 1830–1844 (2001b), DOI:10.1002/pen.1088010.1002/pen.10880Suche in Google Scholar

Marathe, D., Rokade, D., Busher Azad, L., Jadhav, K., Mahajan, S., Ahmad, Z., Gupta, S., Kulkarni, S., Juvekar, V. and Lele, A., "Effect of Plug Temperature on the Strain and Thickness Distribution of Components Made by Plug Assist Thermoforming", Int. Polym. Proc., 31, 166–178 (2016), DOI:10.3139/217.306010.3139/217.3060Suche in Google Scholar

Modirnia, R., Boulet, B., "Model-Based Virtual Sensors and Core-Temperature Observers in Thermoforming Applications", IEEE Trans. Ind. App., 49, 721–730 (2013), DOI:10.1109/TIA.2013.224454410.1109/TIA.2013.2244544Suche in Google Scholar

Monteix, S., Schmidt, F., Le Maoult, Y., Ben Yedder, R., Diraddo, R. W. and Laroche, D., "Experimental Study and Numerical Simulation of Preform or Sheet Exposed to Infrared Radiative Heating", J. Mater. Process. Technol., 119, 90–97 (2001), DOI:10.1016/S0924-0136(01)00882-210.1016/S0924-0136(01)00882-2Suche in Google Scholar

Progelhof, R. C., Quintiere, J., "Temperature Distribution in Semitransparent Plastic Sheets Exposed to Symmetric, Unsymmetric and Pulsed Radiant Heating and Surface Cooling", J. Appl. Polym. Sci., 17, 1227–1252 (1973), DOI:10.1002/app.1973.07017041810.1002/app.1973.070170418Suche in Google Scholar

Puehringer, J. F., Zitzenbacher, G. and Spreitzer, C., "Study of Heat Absorption in the Thermoforming Process for Transparent and Filled Polystyrene", Proceedings of the 27th PPS Conference, Marrakech (2011)Suche in Google Scholar

Rousseau, B.: "Chapter 13 Thermal Radiative Properties of Polymers and Associated Composites", in Heat Transfer in Polymer Composite Materials, Boyard, N. (Ed.), Wiley & Sons, Hoboken, p. 35910.1002/9781119116288.ch12Suche in Google Scholar

Throne, J. L.: Technology of Thermoforming, 1st Edition, Hanser Gardner Publications, Munich (1996), DOI:10.3139/9783446402478.00110.3139/9783446402478.001Suche in Google Scholar

Throne, J. L., "Heating Semitransparent Polymers in Thermoforming", Thermoforming Quarterly, 18, 7–12 (1999)Suche in Google Scholar

Yousefi, A., Bendada, A and Diraddo, R., "Improved Modeling for the Reheat Phase in Thermoforming through an Uncertainty Treatment of the Key Parameters", Polym. Eng. Sci., 42, 1115–1129 (2002), DOI:10.1002/pen.1101610.1002/pen.11016Suche in Google Scholar

Received: 2020-05-04
Accepted: 2021-01-26
Published Online: 2021-09-15
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Artikel in diesem Heft

  1. Contents
  2. Regular Contributed Articles
  3. Fiber Length Distribution in Twin-Screw Extrusion of Fiber-Reinforced Polymer Composites: A Comparison between Shear and Extensional Mixing
  4. The Effect of Nanosilicates on the Performance of Polyethylene Terephthalate Films Prepared by Twin-Screw Extrusion
  5. Synergistic Effect between Modified Graphene Oxide and Ammonium Polyphosphate on Combustion Performance, Thermal Stability and Mechanical Properties of Polylactic Acid
  6. Basic Study of Extensional Flow Mixing for the Dispersion of Carbon Nanotubes in Polypropylene by Using Capillary Extrusion
  7. Pulsed IR Heating of Thermoplastic Sheets for Thermoforming Applications
  8. Novel Design and Comparison of Structural and Modal Analyses of Auxetic Geometry versus Honeycomb Geometry
  9. Effect of Introducing Long Chain Branching on Fiber Diameter and Fiber Diameter Distribution in Melt Blowing Process of Polypropylene
  10. Study on the Relationship between the Bonding Surface and Mechanical Properties of PLA/Epoxy Laminated Composites
  11. A Study on Thermal and Electrical Conductivities of Ethylene-Butene Copolymer Composites with Carbon Fibers
  12. Model Approach for Displaying Dynamic Filament Displacement during Impregnation of Continuous Fibres Based on the Theory of Similarity – Theory and Modelling
  13. Using Symbolic Regression Models to Predict the Pressure Loss of Non-Newtonian Polymer-Melt Flows through Melt-Filtration Systems with Woven Screens
  14. Preparation and Photo-Oxidation Aging Behavior of Oriented Polylactic Acid
  15. Numerical Simulation and Process Optimization of a 3D Thin-Walled Polymeric Part Using Injection Compression Molding
  16. PPS News
  17. Seikei-Kakou abstracts
  18. PPS Membership application
Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2020-3981/html
Button zum nach oben scrollen