Home Preparation and Photo-Oxidation Aging Behavior of Oriented Polylactic Acid
Article
Licensed
Unlicensed Requires Authentication

Preparation and Photo-Oxidation Aging Behavior of Oriented Polylactic Acid

  • Z.-Q. Li , L.-C. Ran , Y. Lang , T. Wu , Y. L. Chen and B. S. Chen
Published/Copyright: September 15, 2021
Become an author with De Gruyter Brill

Abstract

This study employed solid hot stretching technology to produce successfully specifically oriented polylactic acid (PLA) while investigating the impact of orientation structure on its photo-oxidation aging properties. After orientation, the molecular weight and mechanical properties retention rate of PLA were improved, and the crystallinity (Xc) increased in conjunction with prolonged aging time, while the molecular orientation failed to modify the mechanism responsible for PLA deterioration. Furthermore, an examination regarding the way in which the photo-oxidation stability of PLA was enhanced, demonstrated that the increased Xc and structural orientation were beneficial for delaying the photo-oxidation aging of PLA.


Zhengqiu Li, School of Material Science and Engineering of Xihua University, Chengdu 610039, PRC


Acknowledgements

This article was completed with the support of the National Natural Science Foundation of China Youth Fund Project (Grant No. 51803169), the Technology Transfer Demonstration Project of Sichuan Science and Technology Department (Grant No. 2020ZHCG0042), Ministry of Education Chunhui Program (Grant No. 192619), and the key project of Xihua University (Grant No. Z17105).

References

Athanasiou, K. A., Niederauer, G. G. and Agrawal, C. M., "Sterilization, Toxicity, Biocompatibility and Clinical Applications of Polylactic Acid/Polyglycolic Acid Copolymers", Biomaterials, 17, 93–102 (1996), DOI:10.1016/0142-9612(96)85754-110.1016/0142-9612(96)85754-1Search in Google Scholar

Auras, R., Harte, B. and Selke, S., "An Overview of Polylactides as Packaging Materials", Macromol. Biosci.., 4, 835–864 (2004), DOI:10.1002/mabi.20040004310.1002/mabi.200400043Search in Google Scholar PubMed

Gardette, M., Thérias, S., Gardette, J. L., Muraiu, M. and Dubois, P., "Photooxidation of Polylactide/Calcium Sulphate Composites", Polym. Degrad. Stab., 96, 616–623 (2011), DOI:10.1016/j.polymdegradstab.2010.12.02310.1016/j.polymdegradstab.2010.12.023Search in Google Scholar

Gupta, B., Revagade, N. and Hilborn, J., "Poly(lactic acid) Fiber: An Overview", Prog. Polym. Sci., 32, 455–482 (2007), DOI:10.1016/j.progpolymsci.2007.01.00510.1016/j.progpolymsci.2007.01.005Search in Google Scholar

Hamad, K., Kaseem, M., Ayyoob, M., Joo, J. and Deri, F., "Polylactic Acid Blends: The Future of Green, Light and Tough", Prog. Polym. Sci., 85, 83–127 (2018), DOI:10.1016/j.progpolymsci.2018.07.00110.1016/j.progpolymsci.2018.07.001Search in Google Scholar

Iroh, O., Jude, J., "Poly (lactic acid)", in Polymer Data Handbook, Oxford University Press, New York (1999)Search in Google Scholar

Karaarslan, E. S., Bulbul, M., Ertas, E., Cebe, M. A. and Usumez, A., "Assessment of Changes in Color and Color Parameters of Light-Cured Composite Resin after Alternative Polymerization Methods", European Journal of Dentistry, 7, 110–116 (2013), DOI:10.1055/S-0039-169900410.1055/S-0039-1699004Search in Google Scholar

Khankrua, R., Pivsa-Art, S., Hiroyuki, H. and Suttiruengwong, S., "Effect of Chain Extenders on Thermal and Mechanical Properties of Poly(lactic acid) at High Processing Temperatures: Potential Application in PLA/Polyamide 6 Blend", Polym. Degrad. Stab., 108, 232–240 (2014), DOI:10.1016/j.polymdegradstab.2014.04.01910.1016/j.polymdegradstab.2014.04.019Search in Google Scholar

Kuehni, R. G., Marcus, R. T. "An Experiment in Visual Scaling of Small Color Differences", Color Res. App., 4, 31–39 (1979), DOI:10.1111/j.1520-6378.1979.tb00094.x10.1111/j.1520-6378.1979.tb00094.xSearch in Google Scholar

Li, Z., Liu, L. and Chen, B., "Structure and Antimicrobial Properties of Long-Chain Branched Poly(lactic acid)", J. Biomed. Mater. Res. Part A, 107, 2458–2467 (2019), DOI:10.1002/jbm.A.3675210.1002/jbm.A.36752Search in Google Scholar PubMed

Li, Z., Ye, L. and Zhao, X., "High Orientation of Long Chain Branched Poly(lactic acid) with Enhanced Blood Compatibility and Bionic Structure", J. Biomed. Mater. Res. Part A, 104, 1082–1089 (2016), DOI:10.1002/jbm.A.3564010.1002/jbm.A.35640Search in Google Scholar

Li, Z., Zhao, X. and Ye, L., "Fibrillation of Chain Branched Poly(lactic acid) with Improved Blood Compatibility and Bionic Structure", Chem. Eng. J., 279, 767–776 (2015), DOI:10.1016/j.cej.2015.05.08210.1016/j.cej.2015.05.082Search in Google Scholar

Milovanovic, S., Markovic, D., Mrakovic, A., Irena Zizovic, R. K., Frerich, S. and Ivanovic, J., "Supercritical CO2-Assisted Production of PLA and PLGA Foams for Controlled Thymol Release", Mater. Sci. Eng., C, 99, 394–404 (2019), DOI:10.1016/j.msec.2019.01.10610.1016/j.msec.2019.01.106Search in Google Scholar PubMed

Iglesias Montes, M. L., Cyras, V. P., Manfredi , L. B., Pettarín, V. and Fasce, L. A., "Fracture Evaluation of Plasticized Polylactic Acid/Poly (3-hydroxybutyrate) Blends for Commodities Replacement in Packaging Applications", Polym. Test., 84, 106375 (2020), DOI:10.1016/j.polymertesting.2020.10637510.1016/j.polymertesting.2020.106375Search in Google Scholar

Pivsa-Art, S., Phansroy, N., Thodsaratpiyakul, W., Sukkaew, C., Pivsa-Art, W., Lintong, S. and Dedgheng, T., "Preparation of Biodegradable Polymer Copolyesteramides from L-Lactic Acid Oligomers and Polyamide Monomers", Energy Procedia., 56, 648–658 (2014), DOI:10.1016/j.egypro.2014.07.20410.1016/j.egypro.2014.07.204Search in Google Scholar

Rangari, D., Vasanthan, N., "Study of Strain-Induced Crystallization and Enzymatic Degradation of Drawn Poly(L-lactic acid) (PLLA) Films", Macromolecules, 45, 7397–7403 (2012), DOI:10.1021/ma301482j10.1021/ma301482jSearch in Google Scholar

Rasal, R. M., Janorkar, A. V. and Hirt, D. E., "Poly(lactic acid) Modifications", Prog. Polym. Sci., 35, 338–356 (2010), DOI:10.1016/j.progpolymsci.2009.12.00310.1016/j.progpolymsci.2009.12.003Search in Google Scholar

Russell, J. R., Huang, J. T. and Anand, P., "Biodegradation of Polyester Polyurethane by Endophytic Fungi", Appl. Environ. Microbiol., 77, 6076–6084 (2011), DOI:10.1128/AEM.00521-1110.1128/AEM.00521-11Search in Google Scholar PubMed PubMed Central

Shi, K., Ye, L. and Li, G., "Thermal Oxidative Aging Behavior and Stabilizing Mechanism of Highly Oriented Polyamide 6", J. Therm. Anal. Calorim., 126, 795–805 (2016), DOI:10.1007/s10973-016-5523-610.1007/s10973-016-5523-6Search in Google Scholar

Zuo, Y., Li, W. and Li, P., "Preparation and Characterization of Polylactic Acid-G-Bamboo Fiber Based on in-situ Solid Phase Polymerization", Ind. Crops Prod., 123, 646–653 (2018), DOI:10.1016/j.indcrop.2018.07.02410.1016/j.indcrop.2018.07.024Search in Google Scholar

Received: 2020-09-01
Accepted: 2021-02-28
Published Online: 2021-09-15
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Articles in the same Issue

  1. Contents
  2. Regular Contributed Articles
  3. Fiber Length Distribution in Twin-Screw Extrusion of Fiber-Reinforced Polymer Composites: A Comparison between Shear and Extensional Mixing
  4. The Effect of Nanosilicates on the Performance of Polyethylene Terephthalate Films Prepared by Twin-Screw Extrusion
  5. Synergistic Effect between Modified Graphene Oxide and Ammonium Polyphosphate on Combustion Performance, Thermal Stability and Mechanical Properties of Polylactic Acid
  6. Basic Study of Extensional Flow Mixing for the Dispersion of Carbon Nanotubes in Polypropylene by Using Capillary Extrusion
  7. Pulsed IR Heating of Thermoplastic Sheets for Thermoforming Applications
  8. Novel Design and Comparison of Structural and Modal Analyses of Auxetic Geometry versus Honeycomb Geometry
  9. Effect of Introducing Long Chain Branching on Fiber Diameter and Fiber Diameter Distribution in Melt Blowing Process of Polypropylene
  10. Study on the Relationship between the Bonding Surface and Mechanical Properties of PLA/Epoxy Laminated Composites
  11. A Study on Thermal and Electrical Conductivities of Ethylene-Butene Copolymer Composites with Carbon Fibers
  12. Model Approach for Displaying Dynamic Filament Displacement during Impregnation of Continuous Fibres Based on the Theory of Similarity – Theory and Modelling
  13. Using Symbolic Regression Models to Predict the Pressure Loss of Non-Newtonian Polymer-Melt Flows through Melt-Filtration Systems with Woven Screens
  14. Preparation and Photo-Oxidation Aging Behavior of Oriented Polylactic Acid
  15. Numerical Simulation and Process Optimization of a 3D Thin-Walled Polymeric Part Using Injection Compression Molding
  16. PPS News
  17. Seikei-Kakou abstracts
  18. PPS Membership application
Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2020-4036/html
Scroll to top button